P-S转炉磁通添加的智能预测

G. Liu, Xu-bin Zhang, R. Hu
{"title":"P-S转炉磁通添加的智能预测","authors":"G. Liu, Xu-bin Zhang, R. Hu","doi":"10.1109/ISA.2011.5873302","DOIUrl":null,"url":null,"abstract":"Base on the situation analysis of copper matte smelting in P-S converter in the slag stage, this paper use modern BP neural network algorithm to realize the intelligent prediction of optimal flux addition through C programming. The module which is proved by the neural network toolbox of MATLAB can meet the demand of practical application. And the algorithm training time is greatly shortened in engineering operation. This module achieves the auxiliary judgment of prediction for the flux addition amount.","PeriodicalId":128163,"journal":{"name":"2011 3rd International Workshop on Intelligent Systems and Applications","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Intelligent Prediction of Flux Addition of P-S Converter\",\"authors\":\"G. Liu, Xu-bin Zhang, R. Hu\",\"doi\":\"10.1109/ISA.2011.5873302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Base on the situation analysis of copper matte smelting in P-S converter in the slag stage, this paper use modern BP neural network algorithm to realize the intelligent prediction of optimal flux addition through C programming. The module which is proved by the neural network toolbox of MATLAB can meet the demand of practical application. And the algorithm training time is greatly shortened in engineering operation. This module achieves the auxiliary judgment of prediction for the flux addition amount.\",\"PeriodicalId\":128163,\"journal\":{\"name\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISA.2011.5873302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISA.2011.5873302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在分析P-S转炉熔渣阶段铜锍冶炼情况的基础上,采用现代BP神经网络算法,通过C语言编程实现最优助熔剂添加的智能预测。该模块经过MATLAB神经网络工具箱的验证,能够满足实际应用的需要。在工程运行中大大缩短了算法的训练时间。该模块实现了对助熔剂添加量预测的辅助判断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Intelligent Prediction of Flux Addition of P-S Converter
Base on the situation analysis of copper matte smelting in P-S converter in the slag stage, this paper use modern BP neural network algorithm to realize the intelligent prediction of optimal flux addition through C programming. The module which is proved by the neural network toolbox of MATLAB can meet the demand of practical application. And the algorithm training time is greatly shortened in engineering operation. This module achieves the auxiliary judgment of prediction for the flux addition amount.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信