R. Sinnott, U. Aickelin, Yu Jia, Elizabeth R.J. Sinnott, Pei-Yun Sun, Rio Susanto
{"title":"跑还是拍:使用深度学习对宠物的物种类型和情感进行分类","authors":"R. Sinnott, U. Aickelin, Yu Jia, Elizabeth R.J. Sinnott, Pei-Yun Sun, Rio Susanto","doi":"10.1109/CSDE53843.2021.9718465","DOIUrl":null,"url":null,"abstract":"Deep learning has been applied in many contexts. In this paper we present a novel application area: to detect the species type and emotion of pets with focus on a diverse set of dog and cat collections comprising 52 dog and 23 cat species. Building on an extensive collection of labelled images with over 300 images per species type, we explore a range of deep learning models to develop a classifier for species type and their associated emotion. We outline the realization of the technical solution delivered through a mobile application (iPhone/Android) and present results based on feedback based on real world adoption and utilisation by the broader mobile application community.","PeriodicalId":166950,"journal":{"name":"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Run or Pat: Using Deep Learning to Classify the Species Type and Emotion of Pets\",\"authors\":\"R. Sinnott, U. Aickelin, Yu Jia, Elizabeth R.J. Sinnott, Pei-Yun Sun, Rio Susanto\",\"doi\":\"10.1109/CSDE53843.2021.9718465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has been applied in many contexts. In this paper we present a novel application area: to detect the species type and emotion of pets with focus on a diverse set of dog and cat collections comprising 52 dog and 23 cat species. Building on an extensive collection of labelled images with over 300 images per species type, we explore a range of deep learning models to develop a classifier for species type and their associated emotion. We outline the realization of the technical solution delivered through a mobile application (iPhone/Android) and present results based on feedback based on real world adoption and utilisation by the broader mobile application community.\",\"PeriodicalId\":166950,\"journal\":{\"name\":\"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)\",\"volume\":\"202 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSDE53843.2021.9718465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSDE53843.2021.9718465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Run or Pat: Using Deep Learning to Classify the Species Type and Emotion of Pets
Deep learning has been applied in many contexts. In this paper we present a novel application area: to detect the species type and emotion of pets with focus on a diverse set of dog and cat collections comprising 52 dog and 23 cat species. Building on an extensive collection of labelled images with over 300 images per species type, we explore a range of deep learning models to develop a classifier for species type and their associated emotion. We outline the realization of the technical solution delivered through a mobile application (iPhone/Android) and present results based on feedback based on real world adoption and utilisation by the broader mobile application community.