不完全模糊信息系统中基于区间值替换的邻域粗糙集模型

Xiong Meng, Jilin Yang, T. Liu, Dié Wu
{"title":"不完全模糊信息系统中基于区间值替换的邻域粗糙集模型","authors":"Xiong Meng, Jilin Yang, T. Liu, Dié Wu","doi":"10.1109/ccis57298.2022.10016402","DOIUrl":null,"url":null,"abstract":"With the development of big data, incomplete fuzzy information systems (IFISs) exist in many applications. The processing of incomplete information (missing values) is an essential issue in the study of IFIS. Existing studies either increase the uncertainty of missing values, e.g., the neighborhood tolerance relation, or discard the uncertainty of missing values completely, e.g., the imputation approaches based on attribute relevancy. They may lead to unreasonable classification results. In this paper, we propose an interval-value replacement-based neighborhood rough set model (IVR-NRSM) from the perspective of preserving uncertainty to some extent rather than two extremes. According to two semantics of missing values, we first replace lost values in IFIS with interval values. Then the IFIS can be transformed into a replaced IFIS with only one semantic (i.e., the do not care). In the replaced IFIS, we define a distance function for numerical data and interval-value data. Furthermore, we construct the improved neighborhood tolerance relation and the corresponding neighborhood tolerance classes in the replaced IFIS. Finally, we design two experiments on 4 UCI data sets by introducing three performance metrics. Experimental results illustrate that the proposed IVR-NRSM has higher classification performance than the two representative models.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interval-value replacement-based neighborhood rough set model in incomplete fuzzy information systems\",\"authors\":\"Xiong Meng, Jilin Yang, T. Liu, Dié Wu\",\"doi\":\"10.1109/ccis57298.2022.10016402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of big data, incomplete fuzzy information systems (IFISs) exist in many applications. The processing of incomplete information (missing values) is an essential issue in the study of IFIS. Existing studies either increase the uncertainty of missing values, e.g., the neighborhood tolerance relation, or discard the uncertainty of missing values completely, e.g., the imputation approaches based on attribute relevancy. They may lead to unreasonable classification results. In this paper, we propose an interval-value replacement-based neighborhood rough set model (IVR-NRSM) from the perspective of preserving uncertainty to some extent rather than two extremes. According to two semantics of missing values, we first replace lost values in IFIS with interval values. Then the IFIS can be transformed into a replaced IFIS with only one semantic (i.e., the do not care). In the replaced IFIS, we define a distance function for numerical data and interval-value data. Furthermore, we construct the improved neighborhood tolerance relation and the corresponding neighborhood tolerance classes in the replaced IFIS. Finally, we design two experiments on 4 UCI data sets by introducing three performance metrics. Experimental results illustrate that the proposed IVR-NRSM has higher classification performance than the two representative models.\",\"PeriodicalId\":374660,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ccis57298.2022.10016402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着大数据的发展,不完全模糊信息系统(IFISs)在许多应用中都存在。不完全信息(缺失值)的处理是IFIS研究中的一个重要问题。现有研究要么增加缺失值的不确定性,如邻域容差关系,要么完全抛弃缺失值的不确定性,如基于属性相关性的归算方法。它们可能导致不合理的分类结果。本文从一定程度上保留不确定性而不是两个极端的角度出发,提出了一种基于区间值替换的邻域粗糙集模型(IVR-NRSM)。根据缺失值的两种语义,我们首先用区间值替换IFIS中的缺失值。然后,可以将IFIS转换为只有一个语义(即,不关心)的替换IFIS。在替换后的IFIS中,我们为数值数据和区间值数据定义了距离函数。在此基础上,构造了改进的邻域容差关系和相应的邻域容差类。最后,我们通过引入三个性能指标,在4个UCI数据集上设计了两个实验。实验结果表明,所提出的IVR-NRSM模型比两种代表性模型具有更高的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interval-value replacement-based neighborhood rough set model in incomplete fuzzy information systems
With the development of big data, incomplete fuzzy information systems (IFISs) exist in many applications. The processing of incomplete information (missing values) is an essential issue in the study of IFIS. Existing studies either increase the uncertainty of missing values, e.g., the neighborhood tolerance relation, or discard the uncertainty of missing values completely, e.g., the imputation approaches based on attribute relevancy. They may lead to unreasonable classification results. In this paper, we propose an interval-value replacement-based neighborhood rough set model (IVR-NRSM) from the perspective of preserving uncertainty to some extent rather than two extremes. According to two semantics of missing values, we first replace lost values in IFIS with interval values. Then the IFIS can be transformed into a replaced IFIS with only one semantic (i.e., the do not care). In the replaced IFIS, we define a distance function for numerical data and interval-value data. Furthermore, we construct the improved neighborhood tolerance relation and the corresponding neighborhood tolerance classes in the replaced IFIS. Finally, we design two experiments on 4 UCI data sets by introducing three performance metrics. Experimental results illustrate that the proposed IVR-NRSM has higher classification performance than the two representative models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信