参数PDF的拟合优度

N. Katz, Uri Itai
{"title":"参数PDF的拟合优度","authors":"N. Katz, Uri Itai","doi":"10.48550/arXiv.2210.14005","DOIUrl":null,"url":null,"abstract":"The methods for the goodness of fit in classification problems require a prior threshold for determining the confusion matrix. Nonetheless, this fixed threshold removes information that the model’s curves present and may be beneficial for further studies such as risk evaluation and stability analysis. We present a different framework that allows us to perform this study using a parametric PDF.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric PDF for Goodness of Fit\",\"authors\":\"N. Katz, Uri Itai\",\"doi\":\"10.48550/arXiv.2210.14005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The methods for the goodness of fit in classification problems require a prior threshold for determining the confusion matrix. Nonetheless, this fixed threshold removes information that the model’s curves present and may be beneficial for further studies such as risk evaluation and stability analysis. We present a different framework that allows us to perform this study using a parametric PDF.\",\"PeriodicalId\":373878,\"journal\":{\"name\":\"Adv. Artif. Intell. Mach. Learn.\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell. Mach. Learn.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.14005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.14005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分类问题的拟合优度方法需要一个先验阈值来确定混淆矩阵。尽管如此,这个固定的阈值消除了模型曲线所呈现的信息,可能有利于进一步的研究,如风险评估和稳定性分析。我们提出了一个不同的框架,允许我们使用参数PDF执行这项研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric PDF for Goodness of Fit
The methods for the goodness of fit in classification problems require a prior threshold for determining the confusion matrix. Nonetheless, this fixed threshold removes information that the model’s curves present and may be beneficial for further studies such as risk evaluation and stability analysis. We present a different framework that allows us to perform this study using a parametric PDF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信