{"title":"一种新的基于柔性的XYZ平行纳米定位平台的设计","authors":"Xiaozhi Zhang, Qingsong Xu","doi":"10.1109/ROBIO.2015.7419060","DOIUrl":null,"url":null,"abstract":"This paper concentrates on the mechanism design of a new compact parallel flexure stage with three DOFs. First of all, a bridge-principle amplifier is proposed by a serial connection of two fundamental bridge amplifiers. Then, an analytical study of amplifiers in terms of two-stage amplifiers is conducted by performing finite-element analysis (FEA) simulations. Later, a PPR flexure joint is demonstrated to reduce the cross-axis error. Owing to a larger amplification ratio and flexures, the two-stage amplifier is then employed to devise an XYZ parallel stage with decoupled motion. Driven by three low-voltage piezoelectric stacks, the XYZ stage provides larger decoupled motions by using the two-stacked amplifiers, which directly connect the actuators and output platform with the PPR joints. The performance of the designed stage is verified by FEA simulation study.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Design of a new flexure-based XYZ parallel nanopositioning stage\",\"authors\":\"Xiaozhi Zhang, Qingsong Xu\",\"doi\":\"10.1109/ROBIO.2015.7419060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concentrates on the mechanism design of a new compact parallel flexure stage with three DOFs. First of all, a bridge-principle amplifier is proposed by a serial connection of two fundamental bridge amplifiers. Then, an analytical study of amplifiers in terms of two-stage amplifiers is conducted by performing finite-element analysis (FEA) simulations. Later, a PPR flexure joint is demonstrated to reduce the cross-axis error. Owing to a larger amplification ratio and flexures, the two-stage amplifier is then employed to devise an XYZ parallel stage with decoupled motion. Driven by three low-voltage piezoelectric stacks, the XYZ stage provides larger decoupled motions by using the two-stacked amplifiers, which directly connect the actuators and output platform with the PPR joints. The performance of the designed stage is verified by FEA simulation study.\",\"PeriodicalId\":325536,\"journal\":{\"name\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2015.7419060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7419060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a new flexure-based XYZ parallel nanopositioning stage
This paper concentrates on the mechanism design of a new compact parallel flexure stage with three DOFs. First of all, a bridge-principle amplifier is proposed by a serial connection of two fundamental bridge amplifiers. Then, an analytical study of amplifiers in terms of two-stage amplifiers is conducted by performing finite-element analysis (FEA) simulations. Later, a PPR flexure joint is demonstrated to reduce the cross-axis error. Owing to a larger amplification ratio and flexures, the two-stage amplifier is then employed to devise an XYZ parallel stage with decoupled motion. Driven by three low-voltage piezoelectric stacks, the XYZ stage provides larger decoupled motions by using the two-stacked amplifiers, which directly connect the actuators and output platform with the PPR joints. The performance of the designed stage is verified by FEA simulation study.