利用具有性能计算能力的能量探测器进行频谱传感

L. Rugini, P. Banelli, G. Leus
{"title":"利用具有性能计算能力的能量探测器进行频谱传感","authors":"L. Rugini, P. Banelli, G. Leus","doi":"10.1109/EUSIPCO.2016.7760520","DOIUrl":null,"url":null,"abstract":"We focus on the performance of the energy detector for cognitive radio applications. Our aim is to incorporate, into the energy detector, low-complexity algorithms that compute the performance of the detector itself. The main parameters of interest are the probability of detection and the required number of samples. Since the exact performance analysis involves complicated functions of two variables, such as the regularized lower incomplete Gamma function, we introduce new low-complexity approximations based on algebraic transformations of the one-dimensional Gaussian Q-function. The numerical comparison of the proposed approximations with the exact analysis highlights the good accuracy of the low-complexity computation approach.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spectrum sensing using energy detectors with performance computation capabilities\",\"authors\":\"L. Rugini, P. Banelli, G. Leus\",\"doi\":\"10.1109/EUSIPCO.2016.7760520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We focus on the performance of the energy detector for cognitive radio applications. Our aim is to incorporate, into the energy detector, low-complexity algorithms that compute the performance of the detector itself. The main parameters of interest are the probability of detection and the required number of samples. Since the exact performance analysis involves complicated functions of two variables, such as the regularized lower incomplete Gamma function, we introduce new low-complexity approximations based on algebraic transformations of the one-dimensional Gaussian Q-function. The numerical comparison of the proposed approximations with the exact analysis highlights the good accuracy of the low-complexity computation approach.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们专注于认知无线电应用的能量探测器的性能。我们的目标是将低复杂度算法整合到能量探测器中,以计算探测器本身的性能。感兴趣的主要参数是检测概率和所需的样本数量。由于精确的性能分析涉及到两个变量的复杂函数,如正则化的低不完全伽马函数,我们引入了基于一维高斯q函数的代数变换的新的低复杂度近似。将所提出的逼近方法与精确分析方法进行了数值比较,结果表明该方法具有较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectrum sensing using energy detectors with performance computation capabilities
We focus on the performance of the energy detector for cognitive radio applications. Our aim is to incorporate, into the energy detector, low-complexity algorithms that compute the performance of the detector itself. The main parameters of interest are the probability of detection and the required number of samples. Since the exact performance analysis involves complicated functions of two variables, such as the regularized lower incomplete Gamma function, we introduce new low-complexity approximations based on algebraic transformations of the one-dimensional Gaussian Q-function. The numerical comparison of the proposed approximations with the exact analysis highlights the good accuracy of the low-complexity computation approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信