{"title":"利用具有性能计算能力的能量探测器进行频谱传感","authors":"L. Rugini, P. Banelli, G. Leus","doi":"10.1109/EUSIPCO.2016.7760520","DOIUrl":null,"url":null,"abstract":"We focus on the performance of the energy detector for cognitive radio applications. Our aim is to incorporate, into the energy detector, low-complexity algorithms that compute the performance of the detector itself. The main parameters of interest are the probability of detection and the required number of samples. Since the exact performance analysis involves complicated functions of two variables, such as the regularized lower incomplete Gamma function, we introduce new low-complexity approximations based on algebraic transformations of the one-dimensional Gaussian Q-function. The numerical comparison of the proposed approximations with the exact analysis highlights the good accuracy of the low-complexity computation approach.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spectrum sensing using energy detectors with performance computation capabilities\",\"authors\":\"L. Rugini, P. Banelli, G. Leus\",\"doi\":\"10.1109/EUSIPCO.2016.7760520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We focus on the performance of the energy detector for cognitive radio applications. Our aim is to incorporate, into the energy detector, low-complexity algorithms that compute the performance of the detector itself. The main parameters of interest are the probability of detection and the required number of samples. Since the exact performance analysis involves complicated functions of two variables, such as the regularized lower incomplete Gamma function, we introduce new low-complexity approximations based on algebraic transformations of the one-dimensional Gaussian Q-function. The numerical comparison of the proposed approximations with the exact analysis highlights the good accuracy of the low-complexity computation approach.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectrum sensing using energy detectors with performance computation capabilities
We focus on the performance of the energy detector for cognitive radio applications. Our aim is to incorporate, into the energy detector, low-complexity algorithms that compute the performance of the detector itself. The main parameters of interest are the probability of detection and the required number of samples. Since the exact performance analysis involves complicated functions of two variables, such as the regularized lower incomplete Gamma function, we introduce new low-complexity approximations based on algebraic transformations of the one-dimensional Gaussian Q-function. The numerical comparison of the proposed approximations with the exact analysis highlights the good accuracy of the low-complexity computation approach.