Matthew P. Burruss, Shreyas Ramakrishna, G. Karsai, A. Dubey
{"title":"DeepNNCar:用于部署和测试自主机器人中间件框架的测试平台","authors":"Matthew P. Burruss, Shreyas Ramakrishna, G. Karsai, A. Dubey","doi":"10.1109/ISORC.2019.00025","DOIUrl":null,"url":null,"abstract":"This demo showcases the features of an adaptive middleware framework for resource constrained autonomous robots like DeepNNCar (Figure 1). These robots use Learning Enabled Components (LECs), trained with deep learning models to perform control actions. However, these LECs do not provide any safety guarantees and testing them is challenging. To overcome these challenges, we have developed an adaptive middleware framework that (1) augments the LEC with safety controllers that can use different weighted simplex strategies to improve the systems safety guarantees, and (2) includes a resource manager to monitor the resource parameters (temperature, CPU Utilization), and offload tasks at runtime. Using DeepNNCar we will demonstrate the framework and its capability to adaptively switch between the controllers and strategies based on its safety and speed performance.","PeriodicalId":425290,"journal":{"name":"2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DeepNNCar: A Testbed for Deploying and Testing Middleware Frameworks for Autonomous Robots\",\"authors\":\"Matthew P. Burruss, Shreyas Ramakrishna, G. Karsai, A. Dubey\",\"doi\":\"10.1109/ISORC.2019.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This demo showcases the features of an adaptive middleware framework for resource constrained autonomous robots like DeepNNCar (Figure 1). These robots use Learning Enabled Components (LECs), trained with deep learning models to perform control actions. However, these LECs do not provide any safety guarantees and testing them is challenging. To overcome these challenges, we have developed an adaptive middleware framework that (1) augments the LEC with safety controllers that can use different weighted simplex strategies to improve the systems safety guarantees, and (2) includes a resource manager to monitor the resource parameters (temperature, CPU Utilization), and offload tasks at runtime. Using DeepNNCar we will demonstrate the framework and its capability to adaptively switch between the controllers and strategies based on its safety and speed performance.\",\"PeriodicalId\":425290,\"journal\":{\"name\":\"2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORC.2019.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2019.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DeepNNCar: A Testbed for Deploying and Testing Middleware Frameworks for Autonomous Robots
This demo showcases the features of an adaptive middleware framework for resource constrained autonomous robots like DeepNNCar (Figure 1). These robots use Learning Enabled Components (LECs), trained with deep learning models to perform control actions. However, these LECs do not provide any safety guarantees and testing them is challenging. To overcome these challenges, we have developed an adaptive middleware framework that (1) augments the LEC with safety controllers that can use different weighted simplex strategies to improve the systems safety guarantees, and (2) includes a resource manager to monitor the resource parameters (temperature, CPU Utilization), and offload tasks at runtime. Using DeepNNCar we will demonstrate the framework and its capability to adaptively switch between the controllers and strategies based on its safety and speed performance.