检讨配置风险管理方法

Yuhang Zhang, Zhijian Zhang, He Wang, Lixuan Zhang, Dabin Sun
{"title":"检讨配置风险管理方法","authors":"Yuhang Zhang, Zhijian Zhang, He Wang, Lixuan Zhang, Dabin Sun","doi":"10.1115/icone28-64281","DOIUrl":null,"url":null,"abstract":"\n To ensure nuclear safety and prevent or mitigate the consequences of accidents, many safety systems have been set up in nuclear power plants to limit the consequences of accidents. Even though technical specifications based on deterministic safety analysis are applied to avoid serious accidents, they are too poor to handle multi-device managements compared with configuration risk management which computes risks in nuclear power plants based on probabilistic safety assessment according to on-going configurations. In general, there are two methodologies employed in configuration risk management: living probabilistic safety assessment (LPSA) and risk monitor (RM). And average reliability databases during a time of interest are employed in living probabilistic safety assessment, which may be naturally applied to make long-term or regular management projects. While transient risk databases are involved in risk monitor to measure transient risks in nuclear power plants, which may be more appropriate to monitor the real-time risks in nuclear power plants and provide scientific real-time suggestions to operators compared with living probabilistic safety assessment. And this paper concentrates on the applications and developments of living probabilistic safety assessment and risk monitor which are the mainly foundation of the configuration risk management to manage nuclear power plants within safe threshold and avoid serious accidents.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of the Configuration Risk Management Methodologies\",\"authors\":\"Yuhang Zhang, Zhijian Zhang, He Wang, Lixuan Zhang, Dabin Sun\",\"doi\":\"10.1115/icone28-64281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To ensure nuclear safety and prevent or mitigate the consequences of accidents, many safety systems have been set up in nuclear power plants to limit the consequences of accidents. Even though technical specifications based on deterministic safety analysis are applied to avoid serious accidents, they are too poor to handle multi-device managements compared with configuration risk management which computes risks in nuclear power plants based on probabilistic safety assessment according to on-going configurations. In general, there are two methodologies employed in configuration risk management: living probabilistic safety assessment (LPSA) and risk monitor (RM). And average reliability databases during a time of interest are employed in living probabilistic safety assessment, which may be naturally applied to make long-term or regular management projects. While transient risk databases are involved in risk monitor to measure transient risks in nuclear power plants, which may be more appropriate to monitor the real-time risks in nuclear power plants and provide scientific real-time suggestions to operators compared with living probabilistic safety assessment. And this paper concentrates on the applications and developments of living probabilistic safety assessment and risk monitor which are the mainly foundation of the configuration risk management to manage nuclear power plants within safe threshold and avoid serious accidents.\",\"PeriodicalId\":108609,\"journal\":{\"name\":\"Volume 4: Student Paper Competition\",\"volume\":\"218 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone28-64281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone28-64281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了确保核安全,防止或减轻事故后果,核电厂建立了许多安全制度,以限制事故后果。尽管采用了基于确定性安全分析的技术规范来避免严重事故的发生,但与核电厂根据正在进行的配置基于概率安全评估来计算风险的配置风险管理相比,这些技术规范在处理多设备管理方面还是太差了。在配置风险管理中,通常采用两种方法:活概率安全评估(LPSA)和风险监测(RM)。在生活概率安全评价中采用了兴趣时段的平均可靠性数据库,自然可以应用于制定长期或定期的管理项目。而暂态风险数据库则参与风险监测,对核电站暂态风险进行测度,与活概率安全评估相比,可能更适合对核电站的实时风险进行监测,为操作人员提供科学的实时建议。本文重点介绍了动态概率安全评估和风险监测技术的应用和发展,这是配置风险管理的主要基础,可以使核电站在安全阈值内进行管理,避免严重事故的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of the Configuration Risk Management Methodologies
To ensure nuclear safety and prevent or mitigate the consequences of accidents, many safety systems have been set up in nuclear power plants to limit the consequences of accidents. Even though technical specifications based on deterministic safety analysis are applied to avoid serious accidents, they are too poor to handle multi-device managements compared with configuration risk management which computes risks in nuclear power plants based on probabilistic safety assessment according to on-going configurations. In general, there are two methodologies employed in configuration risk management: living probabilistic safety assessment (LPSA) and risk monitor (RM). And average reliability databases during a time of interest are employed in living probabilistic safety assessment, which may be naturally applied to make long-term or regular management projects. While transient risk databases are involved in risk monitor to measure transient risks in nuclear power plants, which may be more appropriate to monitor the real-time risks in nuclear power plants and provide scientific real-time suggestions to operators compared with living probabilistic safety assessment. And this paper concentrates on the applications and developments of living probabilistic safety assessment and risk monitor which are the mainly foundation of the configuration risk management to manage nuclear power plants within safe threshold and avoid serious accidents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信