立方体金刚石车削刀具磨损常数的预测

A. Sharma, D. Datta, R. Balasubramaniam
{"title":"立方体金刚石车削刀具磨损常数的预测","authors":"A. Sharma, D. Datta, R. Balasubramaniam","doi":"10.1177/2516598420930992","DOIUrl":null,"url":null,"abstract":"While several studies in diamond turning of homogeneous materials like Cu, Al, and Si are well published, there is a lack of understanding about tool wear in case of heterogeneous materials like CuBe. Severity of the tool wear can be understood from the magnitude of the wear coefficients, and the magnitude of these coefficients is influenced by the wear mechanism. Hence, this study is aimed to calculate the wear coefficients from a known tool wear model in diamond turn machining of CuBe. Molecular dynamics simulation (MDS) results show that stress and temperature are responsible for increasing rate of tool wear. From the experimental results, change in the tool cutting edge radius due to wear was obtained and the temperature and stress for various a/r were found out using MDS. With these data, the wear coefficients, A & B, from a wear model for diamond turning were calculated. This methodology of using MDS to obtain stress and temperature for various a/r wherein, values of r are obtained from a single machining trial on actual material, will be useful for calculating the wear coefficients for the combination of single crystal diamond tool with various work piece materials and their activation energies.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction of tool wear constants for diamond turn machining of CuBe\",\"authors\":\"A. Sharma, D. Datta, R. Balasubramaniam\",\"doi\":\"10.1177/2516598420930992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While several studies in diamond turning of homogeneous materials like Cu, Al, and Si are well published, there is a lack of understanding about tool wear in case of heterogeneous materials like CuBe. Severity of the tool wear can be understood from the magnitude of the wear coefficients, and the magnitude of these coefficients is influenced by the wear mechanism. Hence, this study is aimed to calculate the wear coefficients from a known tool wear model in diamond turn machining of CuBe. Molecular dynamics simulation (MDS) results show that stress and temperature are responsible for increasing rate of tool wear. From the experimental results, change in the tool cutting edge radius due to wear was obtained and the temperature and stress for various a/r were found out using MDS. With these data, the wear coefficients, A & B, from a wear model for diamond turning were calculated. This methodology of using MDS to obtain stress and temperature for various a/r wherein, values of r are obtained from a single machining trial on actual material, will be useful for calculating the wear coefficients for the combination of single crystal diamond tool with various work piece materials and their activation energies.\",\"PeriodicalId\":129806,\"journal\":{\"name\":\"Journal of Micromanufacturing\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2516598420930992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2516598420930992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

虽然在铜、铝和硅等均质材料的金刚石车削方面的一些研究已经发表得很好,但对立方体等非均质材料的刀具磨损缺乏了解。刀具磨损的严重程度可以从磨损系数的大小来理解,而这些系数的大小受磨损机理的影响。因此,本研究旨在根据已知的刀具磨损模型计算立方体金刚石车削过程中的磨损系数。分子动力学模拟(MDS)结果表明,应力和温度是导致刀具磨损速率增加的主要原因。从实验结果中得到了刀具刃口半径随磨损的变化规律,并利用MDS计算出了不同a/r下的温度和应力。利用这些数据,计算了金刚石车削磨损模型的磨损系数A和B。这种使用MDS获得各种a/r的应力和温度的方法,其中r的值是从实际材料的单次加工试验中获得的,将有助于计算单晶金刚石工具与各种工件材料及其活化能组合的磨损系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of tool wear constants for diamond turn machining of CuBe
While several studies in diamond turning of homogeneous materials like Cu, Al, and Si are well published, there is a lack of understanding about tool wear in case of heterogeneous materials like CuBe. Severity of the tool wear can be understood from the magnitude of the wear coefficients, and the magnitude of these coefficients is influenced by the wear mechanism. Hence, this study is aimed to calculate the wear coefficients from a known tool wear model in diamond turn machining of CuBe. Molecular dynamics simulation (MDS) results show that stress and temperature are responsible for increasing rate of tool wear. From the experimental results, change in the tool cutting edge radius due to wear was obtained and the temperature and stress for various a/r were found out using MDS. With these data, the wear coefficients, A & B, from a wear model for diamond turning were calculated. This methodology of using MDS to obtain stress and temperature for various a/r wherein, values of r are obtained from a single machining trial on actual material, will be useful for calculating the wear coefficients for the combination of single crystal diamond tool with various work piece materials and their activation energies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信