部分可观测初始条件下初始条件参数的有效估计

M. Shuster, D. Porter
{"title":"部分可观测初始条件下初始条件参数的有效估计","authors":"M. Shuster, D. Porter","doi":"10.1109/CDC.1984.272225","DOIUrl":null,"url":null,"abstract":"Efficient and numerically well-conditioned scoring algorithms are presented for the maximum-likelihood estimation of initial means and covariances from an ensemble of tests when the initial condition is not observable per test. These algorithms take account also of the possibility that the estimated initial covariance may be singular. A sufficient statistic is used to reduce the computational burden and singular-value-decomposition and square root techniques are used to increase the numerical accuracy of the algorithm.","PeriodicalId":269680,"journal":{"name":"The 23rd IEEE Conference on Decision and Control","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient estimation of initial-condition parameters for partially observable initial conditions\",\"authors\":\"M. Shuster, D. Porter\",\"doi\":\"10.1109/CDC.1984.272225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient and numerically well-conditioned scoring algorithms are presented for the maximum-likelihood estimation of initial means and covariances from an ensemble of tests when the initial condition is not observable per test. These algorithms take account also of the possibility that the estimated initial covariance may be singular. A sufficient statistic is used to reduce the computational burden and singular-value-decomposition and square root techniques are used to increase the numerical accuracy of the algorithm.\",\"PeriodicalId\":269680,\"journal\":{\"name\":\"The 23rd IEEE Conference on Decision and Control\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 23rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1984.272225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1984.272225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在初始条件不可观测的情况下,提出了对初始均值和协方差进行最大似然估计的有效和数值条件良好的评分算法。这些算法还考虑到估计的初始协方差可能是奇异的可能性。该算法采用了充分统计量来减少计算量,并采用了奇异值分解和平方根技术来提高算法的数值精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient estimation of initial-condition parameters for partially observable initial conditions
Efficient and numerically well-conditioned scoring algorithms are presented for the maximum-likelihood estimation of initial means and covariances from an ensemble of tests when the initial condition is not observable per test. These algorithms take account also of the possibility that the estimated initial covariance may be singular. A sufficient statistic is used to reduce the computational burden and singular-value-decomposition and square root techniques are used to increase the numerical accuracy of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信