具有连续更新的非自治线性二次非合作微分对策

I. Kuchkarov, O. Petrosian, Yin Li
{"title":"具有连续更新的非自治线性二次非合作微分对策","authors":"I. Kuchkarov, O. Petrosian, Yin Li","doi":"10.21638/11701/spbu31.2022.11","DOIUrl":null,"url":null,"abstract":"The subject of this paper is a non-autonomous linear quadratic case of a differential game model with continuous updating. This class of differential games is essentially new where it is assumed that, at each time instant, players have or use information about the game structure defined on a closed time interval with a fixed duration. During the interval information about motion equations and payoff functions of players updates. It is non-autonomy that simulates this effect of updating information. A linear quadratic case for this class of games is particularly important for practical problems arising in the engineering of human-machine interaction. Here we define the Nash equilibrium as an optimality principle and present an explicit form of Nash equilibrium for the linear quadratic case. Also, the case of dynamic updating for the linear quadratic differential game is studied and uniform convergence of Nash equilibrium strategies and corresponding trajectory for a case of continuous updating and dynamic updating is demonstrated.","PeriodicalId":235627,"journal":{"name":"Contributions to Game Theory and Management","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-autonomous Linear Quadratic Non-cooperative Differential Games with Continuous Updating\",\"authors\":\"I. Kuchkarov, O. Petrosian, Yin Li\",\"doi\":\"10.21638/11701/spbu31.2022.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subject of this paper is a non-autonomous linear quadratic case of a differential game model with continuous updating. This class of differential games is essentially new where it is assumed that, at each time instant, players have or use information about the game structure defined on a closed time interval with a fixed duration. During the interval information about motion equations and payoff functions of players updates. It is non-autonomy that simulates this effect of updating information. A linear quadratic case for this class of games is particularly important for practical problems arising in the engineering of human-machine interaction. Here we define the Nash equilibrium as an optimality principle and present an explicit form of Nash equilibrium for the linear quadratic case. Also, the case of dynamic updating for the linear quadratic differential game is studied and uniform convergence of Nash equilibrium strategies and corresponding trajectory for a case of continuous updating and dynamic updating is demonstrated.\",\"PeriodicalId\":235627,\"journal\":{\"name\":\"Contributions to Game Theory and Management\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Game Theory and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu31.2022.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Game Theory and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu31.2022.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究具有连续更新的微分对策模型的非自治线性二次型情况。这类微分博弈本质上是一种新游戏,它假设玩家在每个时刻都拥有或使用关于游戏结构的信息,这些信息定义在一个固定持续时间的封闭时间间隔内。在间隔期间,关于玩家的运动方程和收益函数的信息会更新。非自主性模拟了信息更新的这种效果。这类游戏的线性二次情况对于人机交互工程中出现的实际问题尤其重要。本文将纳什均衡定义为最优性原则,并给出了线性二次型纳什均衡的显式形式。研究了线性二次微分对策的动态更新情况,证明了连续更新和动态更新情况下纳什均衡策略和相应轨迹的一致收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-autonomous Linear Quadratic Non-cooperative Differential Games with Continuous Updating
The subject of this paper is a non-autonomous linear quadratic case of a differential game model with continuous updating. This class of differential games is essentially new where it is assumed that, at each time instant, players have or use information about the game structure defined on a closed time interval with a fixed duration. During the interval information about motion equations and payoff functions of players updates. It is non-autonomy that simulates this effect of updating information. A linear quadratic case for this class of games is particularly important for practical problems arising in the engineering of human-machine interaction. Here we define the Nash equilibrium as an optimality principle and present an explicit form of Nash equilibrium for the linear quadratic case. Also, the case of dynamic updating for the linear quadratic differential game is studied and uniform convergence of Nash equilibrium strategies and corresponding trajectory for a case of continuous updating and dynamic updating is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信