使用陡坡装置的细胞神经网络图像分析

Indranil Palit, Qiuwen Lou, M. Niemier, B. Sedighi, J. Nahas, X. Hu
{"title":"使用陡坡装置的细胞神经网络图像分析","authors":"Indranil Palit, Qiuwen Lou, M. Niemier, B. Sedighi, J. Nahas, X. Hu","doi":"10.1109/ICCAD.2014.7001337","DOIUrl":null,"url":null,"abstract":"Traditional CMOS based von Neumann architectures face daunting challenges in performing complex computational tasks at high speed and with low power on spatio-temporal data, e.g., image processing, pattern recognition, etc. In this study, we discuss the utilities of various steep slope, beyond-CMOS emerging devices for image processing applications within the non-von Neumann computing paradigm of cellular neural networks (CNNs). In general, the steep subthreshold swing of the devices obviates the output transfer hardware used in a conventional CNN cell. For image processing with binary stable outputs, Tunnelling FETs (TFETs) can facilitate low power operation. For multi-valued problems, devices like graphene transistors, Symmetric tunnelling FETs (SymFETs) might be leveraged to solve a problem with fewer computational steps. The potential for additional hardware reduction when compared to functional equivalents via conventional CNNs is also possible. Emerging devices can also lead to lower power implementations of the voltage controlled current sources (VCCSs) that are an integral component of any CNN cell. Furthermore, non-linear implementations of the VCCSs via emerging devices could enable simpler computational paths for many image processing tasks.","PeriodicalId":426584,"journal":{"name":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cellular neural networks for image analysis using steep slope devices\",\"authors\":\"Indranil Palit, Qiuwen Lou, M. Niemier, B. Sedighi, J. Nahas, X. Hu\",\"doi\":\"10.1109/ICCAD.2014.7001337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional CMOS based von Neumann architectures face daunting challenges in performing complex computational tasks at high speed and with low power on spatio-temporal data, e.g., image processing, pattern recognition, etc. In this study, we discuss the utilities of various steep slope, beyond-CMOS emerging devices for image processing applications within the non-von Neumann computing paradigm of cellular neural networks (CNNs). In general, the steep subthreshold swing of the devices obviates the output transfer hardware used in a conventional CNN cell. For image processing with binary stable outputs, Tunnelling FETs (TFETs) can facilitate low power operation. For multi-valued problems, devices like graphene transistors, Symmetric tunnelling FETs (SymFETs) might be leveraged to solve a problem with fewer computational steps. The potential for additional hardware reduction when compared to functional equivalents via conventional CNNs is also possible. Emerging devices can also lead to lower power implementations of the voltage controlled current sources (VCCSs) that are an integral component of any CNN cell. Furthermore, non-linear implementations of the VCCSs via emerging devices could enable simpler computational paths for many image processing tasks.\",\"PeriodicalId\":426584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2014.7001337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2014.7001337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

传统的基于CMOS的冯·诺伊曼架构在对时空数据(如图像处理、模式识别等)进行高速、低功耗的复杂计算任务时面临着严峻的挑战。在本研究中,我们讨论了在细胞神经网络(cnn)的非冯·诺伊曼计算范式中,各种陡坡、超越cmos的新兴器件在图像处理应用中的应用。一般来说,设备的陡峭亚阈值摆动消除了传统CNN单元中使用的输出传输硬件。对于具有二进制稳定输出的图像处理,隧道效应管(tfet)可以实现低功耗工作。对于多值问题,像石墨烯晶体管、对称隧穿场效应管(symfet)这样的器件可以用更少的计算步骤来解决问题。与通过传统cnn的功能等效相比,额外硬件减少的潜力也是可能的。新兴器件还可以降低电压控制电流源(VCCSs)的功耗,这是任何CNN单元的组成部分。此外,通过新兴设备实现的VCCSs的非线性实现可以为许多图像处理任务提供更简单的计算路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellular neural networks for image analysis using steep slope devices
Traditional CMOS based von Neumann architectures face daunting challenges in performing complex computational tasks at high speed and with low power on spatio-temporal data, e.g., image processing, pattern recognition, etc. In this study, we discuss the utilities of various steep slope, beyond-CMOS emerging devices for image processing applications within the non-von Neumann computing paradigm of cellular neural networks (CNNs). In general, the steep subthreshold swing of the devices obviates the output transfer hardware used in a conventional CNN cell. For image processing with binary stable outputs, Tunnelling FETs (TFETs) can facilitate low power operation. For multi-valued problems, devices like graphene transistors, Symmetric tunnelling FETs (SymFETs) might be leveraged to solve a problem with fewer computational steps. The potential for additional hardware reduction when compared to functional equivalents via conventional CNNs is also possible. Emerging devices can also lead to lower power implementations of the voltage controlled current sources (VCCSs) that are an integral component of any CNN cell. Furthermore, non-linear implementations of the VCCSs via emerging devices could enable simpler computational paths for many image processing tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信