可重构模数转换器自适应控制单元的ASIC设计

Z. Razak, A. Erdogan, T. Arslan
{"title":"可重构模数转换器自适应控制单元的ASIC设计","authors":"Z. Razak, A. Erdogan, T. Arslan","doi":"10.1109/ISVLSI.2010.79","DOIUrl":null,"url":null,"abstract":"There is a need to use a truly adaptive analog-to-digital converter (ADC) to respond to any signal change and reduce the power consumption with less implementation complexity. The paper presents a front-end ASIC implementation for an adaptive control unit (ACU) for a reconfigurable ADC. The control unit is based on an adaptive algorithm that changes either the converter resolution or sampling-rate within an observation interval. Switching activity on the digital ADC output is monitored, evaluated and compared to threshold values. The resolution (or sampling-rate) is increased when the switching activity is high and decreased when the activity is low. Since the adaptive control unit is simple, it is suitable for most Nyquist-rate ADCs especially for area-limited portable devices. The module is synthesized using AMS 0.35μm/3.3V CMOS standard libraries. In adaptive resolution ADC application, the ACU occupies only 677 equivalent 2-input NAND gates and consumes only 1.01mW. Meanwhile, for adaptive sampling-rate ADC, the gate density is 703 and power consumption is 2.22mW. The results show that the area complexity of the ACU is small and consumes minimum power. For this reason, the ACU is suitable for adaptive ADC implementation targeting low power wireless applications.","PeriodicalId":187530,"journal":{"name":"2010 IEEE Computer Society Annual Symposium on VLSI","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ASIC Design of an Adaptive Control Unit for Reconfigurable Analog-to-Digital Converters\",\"authors\":\"Z. Razak, A. Erdogan, T. Arslan\",\"doi\":\"10.1109/ISVLSI.2010.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a need to use a truly adaptive analog-to-digital converter (ADC) to respond to any signal change and reduce the power consumption with less implementation complexity. The paper presents a front-end ASIC implementation for an adaptive control unit (ACU) for a reconfigurable ADC. The control unit is based on an adaptive algorithm that changes either the converter resolution or sampling-rate within an observation interval. Switching activity on the digital ADC output is monitored, evaluated and compared to threshold values. The resolution (or sampling-rate) is increased when the switching activity is high and decreased when the activity is low. Since the adaptive control unit is simple, it is suitable for most Nyquist-rate ADCs especially for area-limited portable devices. The module is synthesized using AMS 0.35μm/3.3V CMOS standard libraries. In adaptive resolution ADC application, the ACU occupies only 677 equivalent 2-input NAND gates and consumes only 1.01mW. Meanwhile, for adaptive sampling-rate ADC, the gate density is 703 and power consumption is 2.22mW. The results show that the area complexity of the ACU is small and consumes minimum power. For this reason, the ACU is suitable for adaptive ADC implementation targeting low power wireless applications.\",\"PeriodicalId\":187530,\"journal\":{\"name\":\"2010 IEEE Computer Society Annual Symposium on VLSI\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Computer Society Annual Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2010.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2010.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

需要使用真正自适应的模数转换器(ADC)来响应任何信号变化,并在降低实现复杂性的同时降低功耗。本文介绍了一种可重构ADC自适应控制单元(ACU)的前端ASIC实现。控制单元基于一种自适应算法,该算法可以在观测区间内改变转换器分辨率或采样率。对数字ADC输出的开关活动进行监控,评估并与阈值进行比较。当开关活动高时,分辨率(或采样率)增加,当开关活动低时,分辨率(或采样率)降低。由于自适应控制单元简单,它适用于大多数奈奎斯特速率adc,特别是用于面积有限的便携式设备。该模块采用AMS 0.35μm/3.3V CMOS标准库合成。在自适应分辨率ADC应用中,ACU仅占用677个等效的2输入NAND门,功耗仅为1.01mW。同时,自适应采样率ADC的栅极密度为703,功耗为2.22mW。结果表明,该ACU的面积复杂度小,功耗低。因此,ACU适用于针对低功耗无线应用的自适应ADC实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASIC Design of an Adaptive Control Unit for Reconfigurable Analog-to-Digital Converters
There is a need to use a truly adaptive analog-to-digital converter (ADC) to respond to any signal change and reduce the power consumption with less implementation complexity. The paper presents a front-end ASIC implementation for an adaptive control unit (ACU) for a reconfigurable ADC. The control unit is based on an adaptive algorithm that changes either the converter resolution or sampling-rate within an observation interval. Switching activity on the digital ADC output is monitored, evaluated and compared to threshold values. The resolution (or sampling-rate) is increased when the switching activity is high and decreased when the activity is low. Since the adaptive control unit is simple, it is suitable for most Nyquist-rate ADCs especially for area-limited portable devices. The module is synthesized using AMS 0.35μm/3.3V CMOS standard libraries. In adaptive resolution ADC application, the ACU occupies only 677 equivalent 2-input NAND gates and consumes only 1.01mW. Meanwhile, for adaptive sampling-rate ADC, the gate density is 703 and power consumption is 2.22mW. The results show that the area complexity of the ACU is small and consumes minimum power. For this reason, the ACU is suitable for adaptive ADC implementation targeting low power wireless applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信