基于变帕斯捷尔纳克地基的锥形对称夹层梁稳定性分析

M. Pradhan, P. Dash, M. K. Mishra, P. Pradhan
{"title":"基于变帕斯捷尔纳克地基的锥形对称夹层梁稳定性分析","authors":"M. Pradhan, P. Dash, M. K. Mishra, P. Pradhan","doi":"10.20855/IJAV.2019.24.21178","DOIUrl":null,"url":null,"abstract":"The static and dynamic stability analysis of a three-layered, tapered and symmetric sandwich beam resting on a\nvariable Pasternak foundation and undergoing a periodic axial load has been carried out for two different boundary\nconditions by using a computational method. The governing equation of motion has been derived by using Hamilton’s principle along with generalized Galerkin’s method. The effects of elastic foundation parameter, core-loss\nfactor, the ratio of length of the beam to the thickness of the elastic layer, the ratio of thickness of shear-layer of\nPasternak foundation to the length of the beam, different modulus ratios, taper parameter, core thickness parameter,\ncore-density parameter and geometric parameter on the non-dimensional static buckling load and on the regions of\nparametric instability are studied. This type of study will help the designers to achieve a system with high strength\nto weight ratio and better stability which are the desirable parameters for many modern engineering applications,\nsuch as in the attitude stability of spinning satellites, stability of helicopter components, stability of space vehicles\netc.","PeriodicalId":227331,"journal":{"name":"June 2019","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stability Analysis of a Tapered Symmetric Sandwich Beam Resting on a Variable Pasternak Foundation\",\"authors\":\"M. Pradhan, P. Dash, M. K. Mishra, P. Pradhan\",\"doi\":\"10.20855/IJAV.2019.24.21178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The static and dynamic stability analysis of a three-layered, tapered and symmetric sandwich beam resting on a\\nvariable Pasternak foundation and undergoing a periodic axial load has been carried out for two different boundary\\nconditions by using a computational method. The governing equation of motion has been derived by using Hamilton’s principle along with generalized Galerkin’s method. The effects of elastic foundation parameter, core-loss\\nfactor, the ratio of length of the beam to the thickness of the elastic layer, the ratio of thickness of shear-layer of\\nPasternak foundation to the length of the beam, different modulus ratios, taper parameter, core thickness parameter,\\ncore-density parameter and geometric parameter on the non-dimensional static buckling load and on the regions of\\nparametric instability are studied. This type of study will help the designers to achieve a system with high strength\\nto weight ratio and better stability which are the desirable parameters for many modern engineering applications,\\nsuch as in the attitude stability of spinning satellites, stability of helicopter components, stability of space vehicles\\netc.\",\"PeriodicalId\":227331,\"journal\":{\"name\":\"June 2019\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"June 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20855/IJAV.2019.24.21178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"June 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20855/IJAV.2019.24.21178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文采用计算方法,对基于可变帕斯捷尔纳克地基的三层锥形对称夹层梁在周期性轴向荷载作用下的静动力稳定性进行了两种不同边界条件下的分析。利用哈密顿原理和广义伽辽金方法推导了运动控制方程。研究了弹性地基参数、核心损耗系数、梁长与弹性层厚度之比、剪力层厚度与梁长之比、不同模量比、锥度参数、核心厚度参数、核心密度参数和几何参数对无量纲静力屈曲载荷和参数失稳区域的影响。这种类型的研究将有助于设计人员实现高强度重量比和更好的稳定性系统,这是许多现代工程应用所需的参数,如旋转卫星的姿态稳定性,直升机部件的稳定性,航天器的稳定性等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability Analysis of a Tapered Symmetric Sandwich Beam Resting on a Variable Pasternak Foundation
The static and dynamic stability analysis of a three-layered, tapered and symmetric sandwich beam resting on a variable Pasternak foundation and undergoing a periodic axial load has been carried out for two different boundary conditions by using a computational method. The governing equation of motion has been derived by using Hamilton’s principle along with generalized Galerkin’s method. The effects of elastic foundation parameter, core-loss factor, the ratio of length of the beam to the thickness of the elastic layer, the ratio of thickness of shear-layer of Pasternak foundation to the length of the beam, different modulus ratios, taper parameter, core thickness parameter, core-density parameter and geometric parameter on the non-dimensional static buckling load and on the regions of parametric instability are studied. This type of study will help the designers to achieve a system with high strength to weight ratio and better stability which are the desirable parameters for many modern engineering applications, such as in the attitude stability of spinning satellites, stability of helicopter components, stability of space vehicles etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信