基于决策树算法的矿用卡车故障模式建模

Hui-Ling Hu, T. Golosinski
{"title":"基于决策树算法的矿用卡车故障模式建模","authors":"Hui-Ling Hu, T. Golosinski","doi":"10.1142/S0950609802000975","DOIUrl":null,"url":null,"abstract":"This paper reports on the development of failure pattern recognition model for a mining truck. The model inputs, VIMS data collected in a mine, were processed using one of the Decision Tree algorithms, a module of the Intelligent Miner for Data software of IBM. The results indicate that the Decision Tree allows for identification and quantification of relations between the various types of VIMS data. As such, it can be used for development of a model that would allow prognosticating truck condition and performance. Full development of this capacity requires further research.","PeriodicalId":195550,"journal":{"name":"Mineral Resources Engineering","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling Failure Pattern of a Mining Truck with a Decision Tree Algorithm\",\"authors\":\"Hui-Ling Hu, T. Golosinski\",\"doi\":\"10.1142/S0950609802000975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the development of failure pattern recognition model for a mining truck. The model inputs, VIMS data collected in a mine, were processed using one of the Decision Tree algorithms, a module of the Intelligent Miner for Data software of IBM. The results indicate that the Decision Tree allows for identification and quantification of relations between the various types of VIMS data. As such, it can be used for development of a model that would allow prognosticating truck condition and performance. Full development of this capacity requires further research.\",\"PeriodicalId\":195550,\"journal\":{\"name\":\"Mineral Resources Engineering\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineral Resources Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0950609802000975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral Resources Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0950609802000975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文报道了矿用卡车故障模式识别模型的研制。模型输入是在矿井中采集的VIMS数据,使用IBM Intelligent Miner for data软件的一个模块Decision Tree算法进行处理。结果表明,决策树允许识别和量化各种类型VIMS数据之间的关系。因此,它可以用于开发一个模型,可以预测卡车的状况和性能。充分发展这种能力需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling Failure Pattern of a Mining Truck with a Decision Tree Algorithm
This paper reports on the development of failure pattern recognition model for a mining truck. The model inputs, VIMS data collected in a mine, were processed using one of the Decision Tree algorithms, a module of the Intelligent Miner for Data software of IBM. The results indicate that the Decision Tree allows for identification and quantification of relations between the various types of VIMS data. As such, it can be used for development of a model that would allow prognosticating truck condition and performance. Full development of this capacity requires further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信