基于分布映射指数的多变量数据分类

M. Jiřina
{"title":"基于分布映射指数的多变量数据分类","authors":"M. Jiřina","doi":"10.1109/ICCCYB.2006.305707","DOIUrl":null,"url":null,"abstract":"An exponent similar to the correlation dimension is introduced. This exponent is used for probability density estimation in high-dimensional spaces and for classification of multivariate data. It is also shown that this classifier exhibits significantly better behavior (classification accuracy) than other kinds of classifiers.","PeriodicalId":160588,"journal":{"name":"2006 IEEE International Conference on Computational Cybernetics","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate Data Classification Using the Distribution Mapping Exponent\",\"authors\":\"M. Jiřina\",\"doi\":\"10.1109/ICCCYB.2006.305707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An exponent similar to the correlation dimension is introduced. This exponent is used for probability density estimation in high-dimensional spaces and for classification of multivariate data. It is also shown that this classifier exhibits significantly better behavior (classification accuracy) than other kinds of classifiers.\",\"PeriodicalId\":160588,\"journal\":{\"name\":\"2006 IEEE International Conference on Computational Cybernetics\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Computational Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCYB.2006.305707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Computational Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCYB.2006.305707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引入了一个类似于相关维数的指数。该指数用于高维空间的概率密度估计和多变量数据的分类。该分类器表现出比其他分类器更好的行为(分类精度)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate Data Classification Using the Distribution Mapping Exponent
An exponent similar to the correlation dimension is introduced. This exponent is used for probability density estimation in high-dimensional spaces and for classification of multivariate data. It is also shown that this classifier exhibits significantly better behavior (classification accuracy) than other kinds of classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信