基于模型的基于粒子滤波的面部姿态跟踪

B. Kwolek
{"title":"基于模型的基于粒子滤波的面部姿态跟踪","authors":"B. Kwolek","doi":"10.1109/GMAI.2006.34","DOIUrl":null,"url":null,"abstract":"This paper presents a model-based technique for monocular tracking of the head pose using a non-calibrated camera. We use texture-mapped face images through the 3D head model as the data representation. The mapped data are compared to the model data via a similarity metric that expresses the likeness between the rendered and the reference images. The tracking is realized using a particle filter. In observation model we utilize rectangle features as the primary cue. The potential of our approach is demonstrated by tracking of the head pose on real videos","PeriodicalId":438098,"journal":{"name":"Geometric Modeling and Imaging--New Trends (GMAI'06)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Model Based Facial Pose Tracking Using a Particle Filter\",\"authors\":\"B. Kwolek\",\"doi\":\"10.1109/GMAI.2006.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a model-based technique for monocular tracking of the head pose using a non-calibrated camera. We use texture-mapped face images through the 3D head model as the data representation. The mapped data are compared to the model data via a similarity metric that expresses the likeness between the rendered and the reference images. The tracking is realized using a particle filter. In observation model we utilize rectangle features as the primary cue. The potential of our approach is demonstrated by tracking of the head pose on real videos\",\"PeriodicalId\":438098,\"journal\":{\"name\":\"Geometric Modeling and Imaging--New Trends (GMAI'06)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric Modeling and Imaging--New Trends (GMAI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GMAI.2006.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric Modeling and Imaging--New Trends (GMAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GMAI.2006.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种基于模型的非标定摄像机单目头部姿态跟踪技术。我们通过三维头部模型使用纹理映射的面部图像作为数据表示。映射的数据通过表示渲染图像和参考图像之间的相似性的相似性度量来与模型数据进行比较。利用粒子滤波实现跟踪。在观测模型中,我们利用矩形特征作为主要线索。通过在真实视频中跟踪头部姿势,我们的方法的潜力得到了证明
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Based Facial Pose Tracking Using a Particle Filter
This paper presents a model-based technique for monocular tracking of the head pose using a non-calibrated camera. We use texture-mapped face images through the 3D head model as the data representation. The mapped data are compared to the model data via a similarity metric that expresses the likeness between the rendered and the reference images. The tracking is realized using a particle filter. In observation model we utilize rectangle features as the primary cue. The potential of our approach is demonstrated by tracking of the head pose on real videos
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信