利用Cramer Rao下界对AUV测量设计进行优化覆盖和定位

Ayoung Kim, R. Eustice
{"title":"利用Cramer Rao下界对AUV测量设计进行优化覆盖和定位","authors":"Ayoung Kim, R. Eustice","doi":"10.23919/OCEANS.2009.5422219","DOIUrl":null,"url":null,"abstract":"This paper discusses an approach to using the Cramer Rao Lower Bound (CRLB) as a trajectory design tool for autonomous underwater vehicle (AUV) visual navigation. We begin with a discussion of Fisher Information as a measure of the lower bound of uncertainty in a simultaneous localization and mapping (SLAM) pose-graph. Treating the AUV trajectory as an non-random parameter, the Fisher information is calculated from the CRLB derivation, and depends only upon path geometry and sensor noise. The effect of the trajectory design parameters are evaluated by calculating the CRLB with different parameter sets. Next, optimal survey parameters are selected to improve the overall coverage rate while maintaining an acceptable level of localization precision for a fixed number of pose samples. The utility of the CRLB as a design tool in pre-planning an AUV survey is demonstrated using a synthetic data set for a boustrophedon survey. In this demonstration, we compare the CRLB of the improved survey plan with that of an actual previous hull-inspection survey plan of the USS Saratoga. Survey optimality is evaluated by measuring the overall coverage area and CRLB localization precision for a fixed number of nodes in the graph. We also examine how to exploit prior knowledge of environmental feature distribution in the survey plan.","PeriodicalId":119977,"journal":{"name":"OCEANS 2009","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Toward AUV survey design for optimal coverage and localization using the Cramer Rao Lower Bound\",\"authors\":\"Ayoung Kim, R. Eustice\",\"doi\":\"10.23919/OCEANS.2009.5422219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses an approach to using the Cramer Rao Lower Bound (CRLB) as a trajectory design tool for autonomous underwater vehicle (AUV) visual navigation. We begin with a discussion of Fisher Information as a measure of the lower bound of uncertainty in a simultaneous localization and mapping (SLAM) pose-graph. Treating the AUV trajectory as an non-random parameter, the Fisher information is calculated from the CRLB derivation, and depends only upon path geometry and sensor noise. The effect of the trajectory design parameters are evaluated by calculating the CRLB with different parameter sets. Next, optimal survey parameters are selected to improve the overall coverage rate while maintaining an acceptable level of localization precision for a fixed number of pose samples. The utility of the CRLB as a design tool in pre-planning an AUV survey is demonstrated using a synthetic data set for a boustrophedon survey. In this demonstration, we compare the CRLB of the improved survey plan with that of an actual previous hull-inspection survey plan of the USS Saratoga. Survey optimality is evaluated by measuring the overall coverage area and CRLB localization precision for a fixed number of nodes in the graph. We also examine how to exploit prior knowledge of environmental feature distribution in the survey plan.\",\"PeriodicalId\":119977,\"journal\":{\"name\":\"OCEANS 2009\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2009\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/OCEANS.2009.5422219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS.2009.5422219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文讨论了一种利用Cramer - Rao下界(CRLB)作为自主水下航行器(AUV)视觉导航的轨迹设计工具的方法。我们首先讨论Fisher信息作为同时定位和映射(SLAM)姿态图中不确定性下界的度量。将AUV轨迹作为一个非随机参数,从CRLB推导中计算Fisher信息,并且仅依赖于路径几何形状和传感器噪声。通过计算不同参数集下的CRLB,评估了弹道设计参数对CRLB的影响。接下来,选择最优的调查参数,以提高总体覆盖率,同时在固定数量的位姿样本中保持可接受的定位精度水平。CRLB作为一种设计工具,在预先规划水下航行器调查中发挥了重要作用。在这个演示中,我们将改进的检验计划的CRLB与美国萨拉托加号以前的实际船体检验计划进行了比较。通过测量图中固定数量节点的总体覆盖面积和CRLB定位精度来评估调查最优性。我们还研究了如何在调查计划中利用环境特征分布的先验知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward AUV survey design for optimal coverage and localization using the Cramer Rao Lower Bound
This paper discusses an approach to using the Cramer Rao Lower Bound (CRLB) as a trajectory design tool for autonomous underwater vehicle (AUV) visual navigation. We begin with a discussion of Fisher Information as a measure of the lower bound of uncertainty in a simultaneous localization and mapping (SLAM) pose-graph. Treating the AUV trajectory as an non-random parameter, the Fisher information is calculated from the CRLB derivation, and depends only upon path geometry and sensor noise. The effect of the trajectory design parameters are evaluated by calculating the CRLB with different parameter sets. Next, optimal survey parameters are selected to improve the overall coverage rate while maintaining an acceptable level of localization precision for a fixed number of pose samples. The utility of the CRLB as a design tool in pre-planning an AUV survey is demonstrated using a synthetic data set for a boustrophedon survey. In this demonstration, we compare the CRLB of the improved survey plan with that of an actual previous hull-inspection survey plan of the USS Saratoga. Survey optimality is evaluated by measuring the overall coverage area and CRLB localization precision for a fixed number of nodes in the graph. We also examine how to exploit prior knowledge of environmental feature distribution in the survey plan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信