{"title":"基于Besov范数正则化的改进小波基图像去噪方法","authors":"Hong Yang, Yiding Wang","doi":"10.1109/ICIG.2007.52","DOIUrl":null,"url":null,"abstract":"This paper proposes art improved image denoising algorithm which bases on wavelets thresholding - and uses the Besov norm regularization. Given a noisy image u<sub>0</sub> and suppose the target image u belongs to we need to solve the Besov space B<sup>a</sup> <sub>q</sub>(L<sup>p</sup>) optimization problem: min ||u||<sup>q</sup> <sub>B</sub> <sup>a</sup> <sub>q</sub> <sub>(L</sub> <sup>p</sup> <sub>)</sub> <sub>+</sub> lambda/2|| u - u<sub>0</sub> ||<sup>2</sup> <sub>L</sub> <sup>2</sup> The existing algorithms used the fixed parameters p, q, a of B<sup>a</sup> <sub>q</sub>(L<sup>p</sup>) to determine the threshold of wavelets reconstruction. Since different parts of an image may have different smoothness properties, and wavelet coefficients denote different frequency subbands of an image, the subimages at each wavelets scale level may have distinct smoothness properties. The larger the a is, the smoother the images are in B<sup>a</sup> <sub>q</sub>(L<sup>p</sup>). Taking the smoothness index a into account, we try to optimize the alpha<sub>j</sub> at different wavelet scale j with p,q fixed. Experimental results show that our method achieves better denoising effect with higher PSNR than the alpha fixed method.","PeriodicalId":367106,"journal":{"name":"Fourth International Conference on Image and Graphics (ICIG 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An Improved Method of Wavelets Basis Image Denoising Using Besov Norm Regularization\",\"authors\":\"Hong Yang, Yiding Wang\",\"doi\":\"10.1109/ICIG.2007.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes art improved image denoising algorithm which bases on wavelets thresholding - and uses the Besov norm regularization. Given a noisy image u<sub>0</sub> and suppose the target image u belongs to we need to solve the Besov space B<sup>a</sup> <sub>q</sub>(L<sup>p</sup>) optimization problem: min ||u||<sup>q</sup> <sub>B</sub> <sup>a</sup> <sub>q</sub> <sub>(L</sub> <sup>p</sup> <sub>)</sub> <sub>+</sub> lambda/2|| u - u<sub>0</sub> ||<sup>2</sup> <sub>L</sub> <sup>2</sup> The existing algorithms used the fixed parameters p, q, a of B<sup>a</sup> <sub>q</sub>(L<sup>p</sup>) to determine the threshold of wavelets reconstruction. Since different parts of an image may have different smoothness properties, and wavelet coefficients denote different frequency subbands of an image, the subimages at each wavelets scale level may have distinct smoothness properties. The larger the a is, the smoother the images are in B<sup>a</sup> <sub>q</sub>(L<sup>p</sup>). Taking the smoothness index a into account, we try to optimize the alpha<sub>j</sub> at different wavelet scale j with p,q fixed. Experimental results show that our method achieves better denoising effect with higher PSNR than the alpha fixed method.\",\"PeriodicalId\":367106,\"journal\":{\"name\":\"Fourth International Conference on Image and Graphics (ICIG 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on Image and Graphics (ICIG 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIG.2007.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Image and Graphics (ICIG 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2007.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
摘要
本文提出了基于小波阈值和贝索夫范数正则化的图像去噪算法。给定一幅带有噪声的图像u0,假设目标图像u属于我们需要解决的Besov空间Ba q(Lp)优化问题:min ||u| q Ba q(Lp) + lambda/2|| u - u0 || 2l2现有算法采用Ba q(Lp)的固定参数p、q、a来确定小波重构的阈值。由于图像的不同部分可能具有不同的平滑特性,并且小波系数表示图像的不同频率子带,因此每个小波尺度上的子图像可能具有不同的平滑特性。a越大,在Ba q(Lp)中图像越平滑。考虑到平滑指数a,我们尝试在p,q固定的情况下优化不同小波尺度j下的alphaj。实验结果表明,该方法比α固定方法获得了更好的去噪效果和更高的信噪比。
An Improved Method of Wavelets Basis Image Denoising Using Besov Norm Regularization
This paper proposes art improved image denoising algorithm which bases on wavelets thresholding - and uses the Besov norm regularization. Given a noisy image u0 and suppose the target image u belongs to we need to solve the Besov space Baq(Lp) optimization problem: min ||u||qBaq(Lp)+ lambda/2|| u - u0 ||2L2 The existing algorithms used the fixed parameters p, q, a of Baq(Lp) to determine the threshold of wavelets reconstruction. Since different parts of an image may have different smoothness properties, and wavelet coefficients denote different frequency subbands of an image, the subimages at each wavelets scale level may have distinct smoothness properties. The larger the a is, the smoother the images are in Baq(Lp). Taking the smoothness index a into account, we try to optimize the alphaj at different wavelet scale j with p,q fixed. Experimental results show that our method achieves better denoising effect with higher PSNR than the alpha fixed method.