网络化多机器人系统的在线局部边界检测与分类算法

Pham Duy Hung, T. Q. Vinh, T. Ngo
{"title":"网络化多机器人系统的在线局部边界检测与分类算法","authors":"Pham Duy Hung, T. Q. Vinh, T. Ngo","doi":"10.1109/ATC.2016.7764783","DOIUrl":null,"url":null,"abstract":"We present an online boundary classification error detection algorithm to improve accuracy of the original distributed boundary detection algorithm for networked multirobot systems. It is a fully decentralized method based on the geometric approach allowing to suppress boundary errors without recursive process and global synchronization. The accuracy of the ration of correctly identified robots over the total number of robots reaches 100%. We have demonstrated the effectiveness of this boundary detection algorithm in both simulation and real-world environment.","PeriodicalId":225413,"journal":{"name":"2016 International Conference on Advanced Technologies for Communications (ATC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An online local boundary detection and classification algorithm for networked multi-robot systems\",\"authors\":\"Pham Duy Hung, T. Q. Vinh, T. Ngo\",\"doi\":\"10.1109/ATC.2016.7764783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an online boundary classification error detection algorithm to improve accuracy of the original distributed boundary detection algorithm for networked multirobot systems. It is a fully decentralized method based on the geometric approach allowing to suppress boundary errors without recursive process and global synchronization. The accuracy of the ration of correctly identified robots over the total number of robots reaches 100%. We have demonstrated the effectiveness of this boundary detection algorithm in both simulation and real-world environment.\",\"PeriodicalId\":225413,\"journal\":{\"name\":\"2016 International Conference on Advanced Technologies for Communications (ATC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Advanced Technologies for Communications (ATC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATC.2016.7764783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2016.7764783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对网络多机器人系统,提出了一种在线边界分类错误检测算法,以提高原有分布式边界检测算法的准确性。它是一种基于几何方法的完全去中心化方法,可以抑制边界误差,不需要递归过程和全局同步。正确识别的机器人比例占机器人总数的准确率达到100%。我们已经在仿真和现实环境中证明了这种边界检测算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An online local boundary detection and classification algorithm for networked multi-robot systems
We present an online boundary classification error detection algorithm to improve accuracy of the original distributed boundary detection algorithm for networked multirobot systems. It is a fully decentralized method based on the geometric approach allowing to suppress boundary errors without recursive process and global synchronization. The accuracy of the ration of correctly identified robots over the total number of robots reaches 100%. We have demonstrated the effectiveness of this boundary detection algorithm in both simulation and real-world environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信