任意形状导电圆柱体的生物医学微波反演

P. Mojabi, C. Gilmore, A. Zakaria, J. Lovetri
{"title":"任意形状导电圆柱体的生物医学微波反演","authors":"P. Mojabi, C. Gilmore, A. Zakaria, J. Lovetri","doi":"10.1109/ANTEMURSI.2009.4805094","DOIUrl":null,"url":null,"abstract":"We introduce a non-linear inversion algorithm for use in microwave biomedical imaging when the object of interest is surrounded by an arbitrarily shaped conducting enclosure. The algorithm utilizes the Gauss-Newton inversion method and a combined additive and multiplicative regularizer. The conducting enclosure is taken into account via a FEM-based forward solver which is able to efficiently model arbitrarily shaped boundaries. Results for the 2D scalar case are given when the enclosure is a circle, triangle, and square, and include simple and complex biological scatterers, based on synthetic data. The results show that the algorithm is capable of reconstructing objects in all cylinder types.","PeriodicalId":190053,"journal":{"name":"2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Biomedical microwave inversion in conducting cylinders of arbitrary shapes\",\"authors\":\"P. Mojabi, C. Gilmore, A. Zakaria, J. Lovetri\",\"doi\":\"10.1109/ANTEMURSI.2009.4805094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a non-linear inversion algorithm for use in microwave biomedical imaging when the object of interest is surrounded by an arbitrarily shaped conducting enclosure. The algorithm utilizes the Gauss-Newton inversion method and a combined additive and multiplicative regularizer. The conducting enclosure is taken into account via a FEM-based forward solver which is able to efficiently model arbitrarily shaped boundaries. Results for the 2D scalar case are given when the enclosure is a circle, triangle, and square, and include simple and complex biological scatterers, based on synthetic data. The results show that the algorithm is capable of reconstructing objects in all cylinder types.\",\"PeriodicalId\":190053,\"journal\":{\"name\":\"2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTEMURSI.2009.4805094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTEMURSI.2009.4805094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们介绍了一种用于微波生物医学成像的非线性反演算法,当感兴趣的物体被任意形状的导体包围时。该算法采用高斯-牛顿反演法和加性和乘性组合正则化方法。通过基于有限元法的正演求解器考虑了导体外壳,该方法能够有效地模拟任意形状的边界。基于合成数据,给出了二维标量情况下的结果,包括圆形、三角形和正方形,以及简单和复杂的生物散射体。结果表明,该算法能够重建所有圆柱体类型的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomedical microwave inversion in conducting cylinders of arbitrary shapes
We introduce a non-linear inversion algorithm for use in microwave biomedical imaging when the object of interest is surrounded by an arbitrarily shaped conducting enclosure. The algorithm utilizes the Gauss-Newton inversion method and a combined additive and multiplicative regularizer. The conducting enclosure is taken into account via a FEM-based forward solver which is able to efficiently model arbitrarily shaped boundaries. Results for the 2D scalar case are given when the enclosure is a circle, triangle, and square, and include simple and complex biological scatterers, based on synthetic data. The results show that the algorithm is capable of reconstructing objects in all cylinder types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信