{"title":"用于暴力检测的数据高效视频转换器","authors":"Al.maamoon Rasool Abdali","doi":"10.1109/COMNETSAT53002.2021.9530829","DOIUrl":null,"url":null,"abstract":"In smart cities, violence event detection is critical to ensure city safety. Several studies have been done on this topic with a focus on 2d-Convolutional Neural Network (2d-CNN) to detect spatial features from each frame, followed by one of the Recurrent Neural Networks (RNN) variants as a temporal features learning method. On the other hand, the transformer network has achieved a great result in many areas. The bottleneck for transformers is the need for large data set to achieve good results. In this work, we propose a data-efficient video transformer (DeVTr) based on the transformer network as a Spatio-temporal learning method with a pre-trained 2d-Convolutional neural network (2d-CNN) as an embedding layer for the input data. The model has been trained and tested on the Real-life violence dataset (RLVS) and achieved an accuracy of 96.25%. A comparison of the result for the suggested method with previous techniques illustrated that the suggested method provides the best result among all the other studies for violence event detection.","PeriodicalId":148136,"journal":{"name":"2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","volume":"248 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Data Efficient Video Transformer for Violence Detection\",\"authors\":\"Al.maamoon Rasool Abdali\",\"doi\":\"10.1109/COMNETSAT53002.2021.9530829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In smart cities, violence event detection is critical to ensure city safety. Several studies have been done on this topic with a focus on 2d-Convolutional Neural Network (2d-CNN) to detect spatial features from each frame, followed by one of the Recurrent Neural Networks (RNN) variants as a temporal features learning method. On the other hand, the transformer network has achieved a great result in many areas. The bottleneck for transformers is the need for large data set to achieve good results. In this work, we propose a data-efficient video transformer (DeVTr) based on the transformer network as a Spatio-temporal learning method with a pre-trained 2d-Convolutional neural network (2d-CNN) as an embedding layer for the input data. The model has been trained and tested on the Real-life violence dataset (RLVS) and achieved an accuracy of 96.25%. A comparison of the result for the suggested method with previous techniques illustrated that the suggested method provides the best result among all the other studies for violence event detection.\",\"PeriodicalId\":148136,\"journal\":{\"name\":\"2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"volume\":\"248 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMNETSAT53002.2021.9530829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMNETSAT53002.2021.9530829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data Efficient Video Transformer for Violence Detection
In smart cities, violence event detection is critical to ensure city safety. Several studies have been done on this topic with a focus on 2d-Convolutional Neural Network (2d-CNN) to detect spatial features from each frame, followed by one of the Recurrent Neural Networks (RNN) variants as a temporal features learning method. On the other hand, the transformer network has achieved a great result in many areas. The bottleneck for transformers is the need for large data set to achieve good results. In this work, we propose a data-efficient video transformer (DeVTr) based on the transformer network as a Spatio-temporal learning method with a pre-trained 2d-Convolutional neural network (2d-CNN) as an embedding layer for the input data. The model has been trained and tested on the Real-life violence dataset (RLVS) and achieved an accuracy of 96.25%. A comparison of the result for the suggested method with previous techniques illustrated that the suggested method provides the best result among all the other studies for violence event detection.