{"title":"单元矩阵结构的性能增强缺陷容忍度","authors":"C. R. Saha, S. Bellis, A. Mathewson, E. Popovici","doi":"10.1109/ICMEL.2004.1314949","DOIUrl":null,"url":null,"abstract":"This research concentrates on the area of fault tolerant circuit implementation in a field programmable type architecture, In particular, an architecture called the Cell Matrix, presented as a fault tolerant alternative to field programmable gate arrays using their Supercell approach, is studied. Architectural constraints to implement fault tolerant circuit design in this architecture are discussed. Some modifications of its basic Structure, such as the integration of circuitry for error correction and scan path, to enhance fault tolerant circuits design are introduced and are compared to the Supercell approach.","PeriodicalId":202761,"journal":{"name":"2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Performance enhancement defect tolerance in the cell matrix architecture\",\"authors\":\"C. R. Saha, S. Bellis, A. Mathewson, E. Popovici\",\"doi\":\"10.1109/ICMEL.2004.1314949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research concentrates on the area of fault tolerant circuit implementation in a field programmable type architecture, In particular, an architecture called the Cell Matrix, presented as a fault tolerant alternative to field programmable gate arrays using their Supercell approach, is studied. Architectural constraints to implement fault tolerant circuit design in this architecture are discussed. Some modifications of its basic Structure, such as the integration of circuitry for error correction and scan path, to enhance fault tolerant circuits design are introduced and are compared to the Supercell approach.\",\"PeriodicalId\":202761,\"journal\":{\"name\":\"2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716)\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEL.2004.1314949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEL.2004.1314949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance enhancement defect tolerance in the cell matrix architecture
This research concentrates on the area of fault tolerant circuit implementation in a field programmable type architecture, In particular, an architecture called the Cell Matrix, presented as a fault tolerant alternative to field programmable gate arrays using their Supercell approach, is studied. Architectural constraints to implement fault tolerant circuit design in this architecture are discussed. Some modifications of its basic Structure, such as the integration of circuitry for error correction and scan path, to enhance fault tolerant circuits design are introduced and are compared to the Supercell approach.