基于对象元素合并对数据挖掘的对象属性空间进行划分

Hu Yaoyu, W. Ai
{"title":"基于对象元素合并对数据挖掘的对象属性空间进行划分","authors":"Hu Yaoyu, W. Ai","doi":"10.1109/LISS.2015.7369678","DOIUrl":null,"url":null,"abstract":"The research of partitioning the object-attribute space belongs to the domain of interpretative structural modeling and it is one of the basic problems in the data mining field. Firstly this paper proposes and demonstrates the Subsystem Judgment theorem. In order to solve the problem above, an algorithm that reduces the scale and the dimension of the original data through partitioning the object-attribute space based on the merger of object elements is put forth. In the last part of the paper, a numerical value example is provided to show the whole process of the method.","PeriodicalId":124091,"journal":{"name":"2015 International Conference on Logistics, Informatics and Service Sciences (LISS)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Partitioning the object-attribute space for data mining based on the merger of object elements\",\"authors\":\"Hu Yaoyu, W. Ai\",\"doi\":\"10.1109/LISS.2015.7369678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research of partitioning the object-attribute space belongs to the domain of interpretative structural modeling and it is one of the basic problems in the data mining field. Firstly this paper proposes and demonstrates the Subsystem Judgment theorem. In order to solve the problem above, an algorithm that reduces the scale and the dimension of the original data through partitioning the object-attribute space based on the merger of object elements is put forth. In the last part of the paper, a numerical value example is provided to show the whole process of the method.\",\"PeriodicalId\":124091,\"journal\":{\"name\":\"2015 International Conference on Logistics, Informatics and Service Sciences (LISS)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Logistics, Informatics and Service Sciences (LISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LISS.2015.7369678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Logistics, Informatics and Service Sciences (LISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISS.2015.7369678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对象属性空间划分研究属于解释结构建模领域,是数据挖掘领域的基本问题之一。本文首先提出并论证了子系统判断定理。为了解决上述问题,提出了一种基于对象元素合并的对象-属性空间划分算法,对原始数据进行尺度和维数的降维。在文章的最后,给出了一个数值算例来说明该方法的整个过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partitioning the object-attribute space for data mining based on the merger of object elements
The research of partitioning the object-attribute space belongs to the domain of interpretative structural modeling and it is one of the basic problems in the data mining field. Firstly this paper proposes and demonstrates the Subsystem Judgment theorem. In order to solve the problem above, an algorithm that reduces the scale and the dimension of the original data through partitioning the object-attribute space based on the merger of object elements is put forth. In the last part of the paper, a numerical value example is provided to show the whole process of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信