{"title":"一种可重构的buck-boost开关电容转换器架构,适用于多个分布式片上负载应用","authors":"Libin George, T. Lehmann, T. J. Hamilton","doi":"10.1109/NEWCAS.2014.6934083","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a dual-output reconfigurable buck-boost switched capacitor converter architecture that can be adapted for applications requiring multiple, distributed on-chip loads. This system uses adaptive gain control and discrete frequency scaling to regulate power delivered. Core-interleaving and an enhanced load regulation scheme have also been adopted to improve performance. The converter provides a fully-integrated, low-area and fully digital solution. Design and implementation using a standard bulk CMOS 0.18μm process provide simulation results showing that the converter has an output voltage range of 1.0-2.2V, can deliver up to 5mA in load current and is up to 67% efficient.","PeriodicalId":216848,"journal":{"name":"2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A reconfigurable buck-boost switched capacitor converter architecture for multiple, distributed on-chip load applications\",\"authors\":\"Libin George, T. Lehmann, T. J. Hamilton\",\"doi\":\"10.1109/NEWCAS.2014.6934083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of a dual-output reconfigurable buck-boost switched capacitor converter architecture that can be adapted for applications requiring multiple, distributed on-chip loads. This system uses adaptive gain control and discrete frequency scaling to regulate power delivered. Core-interleaving and an enhanced load regulation scheme have also been adopted to improve performance. The converter provides a fully-integrated, low-area and fully digital solution. Design and implementation using a standard bulk CMOS 0.18μm process provide simulation results showing that the converter has an output voltage range of 1.0-2.2V, can deliver up to 5mA in load current and is up to 67% efficient.\",\"PeriodicalId\":216848,\"journal\":{\"name\":\"2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2014.6934083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2014.6934083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A reconfigurable buck-boost switched capacitor converter architecture for multiple, distributed on-chip load applications
This paper presents the design of a dual-output reconfigurable buck-boost switched capacitor converter architecture that can be adapted for applications requiring multiple, distributed on-chip loads. This system uses adaptive gain control and discrete frequency scaling to regulate power delivered. Core-interleaving and an enhanced load regulation scheme have also been adopted to improve performance. The converter provides a fully-integrated, low-area and fully digital solution. Design and implementation using a standard bulk CMOS 0.18μm process provide simulation results showing that the converter has an output voltage range of 1.0-2.2V, can deliver up to 5mA in load current and is up to 67% efficient.