粒径依赖性生长动力学间歇结晶的最优控制

N. Bajçinca, S. Hofmann
{"title":"粒径依赖性生长动力学间歇结晶的最优控制","authors":"N. Bajçinca, S. Hofmann","doi":"10.1109/ACC.2011.5991531","DOIUrl":null,"url":null,"abstract":"An efficient algorithm for the optimal control of a batch crystallization process with size-dependent growth kinetics is proposed. By means of a unique diffeomorphism, new independent coordinates for the time and size variables of the underlying population balance equation are introduced, leading to a closed infinite dimensional moment model. The posed optimal control problem is solved using the minimum principle for a simplified model with neglected natural feedback of the nucleation mass into the crystallization kinetics. The solution is obtained in analytical form, and it is shown to be unique. Additionally, for the original optimization problem involving the full process dynamics, a simple feasible sub-optimal solution, as well as a lower and an upper bound for the cost, are suggested.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimal control for batch crystallization with size-dependent growth kinetics\",\"authors\":\"N. Bajçinca, S. Hofmann\",\"doi\":\"10.1109/ACC.2011.5991531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient algorithm for the optimal control of a batch crystallization process with size-dependent growth kinetics is proposed. By means of a unique diffeomorphism, new independent coordinates for the time and size variables of the underlying population balance equation are introduced, leading to a closed infinite dimensional moment model. The posed optimal control problem is solved using the minimum principle for a simplified model with neglected natural feedback of the nucleation mass into the crystallization kinetics. The solution is obtained in analytical form, and it is shown to be unique. Additionally, for the original optimization problem involving the full process dynamics, a simple feasible sub-optimal solution, as well as a lower and an upper bound for the cost, are suggested.\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2011.5991531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2011.5991531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种具有粒径依赖生长动力学的间歇结晶过程最优控制算法。利用唯一的微分同构,引入了新的独立坐标来表示底层种群平衡方程的时间和大小变量,从而得到了一个封闭的无限维矩模型。在忽略成核质量对结晶动力学的自然反馈的情况下,利用简化模型的最小值原理解决了所提出的最优控制问题。得到了解的解析形式,并证明了解的唯一性。此外,对于涉及整个过程动力学的原优化问题,给出了一个简单可行的次优解,以及成本的下界和上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control for batch crystallization with size-dependent growth kinetics
An efficient algorithm for the optimal control of a batch crystallization process with size-dependent growth kinetics is proposed. By means of a unique diffeomorphism, new independent coordinates for the time and size variables of the underlying population balance equation are introduced, leading to a closed infinite dimensional moment model. The posed optimal control problem is solved using the minimum principle for a simplified model with neglected natural feedback of the nucleation mass into the crystallization kinetics. The solution is obtained in analytical form, and it is shown to be unique. Additionally, for the original optimization problem involving the full process dynamics, a simple feasible sub-optimal solution, as well as a lower and an upper bound for the cost, are suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信