{"title":"基于多假设运动补偿预测的容错视频传输","authors":"Wei-Ying Kung, Chang-Su Kim, C.-C. Jay Kuo","doi":"10.1117/12.510847","DOIUrl":null,"url":null,"abstract":"Multi-hypothesis motion compensated prediction (MHMCP) predicts a block from a weighted sum of multiple reference blocks in the frame buffer. By efficiently combining these reference blocks, MHMCP can provide less prediction errors so as to reduce the coding bit rates. Although MHMCP was originally proposed to achieve high coding efficiency, it has been observed recently that MHMCP can also enhance the error resilient property of compressed video. In this work, we investigate the error propagation effect in the MHMCP coder. More specifically, we study how the multi-hypothesis number as well as hypothesis coefficients influence the strength of propagating errors. Simulation results are given to confirm our analysis. Finally, several design principles for the MHMCP coder are derived based on our analysis and simulation results.","PeriodicalId":282161,"journal":{"name":"SPIE ITCom","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error-resilient video transmission with multi-hypothesis motion-compensated prediction\",\"authors\":\"Wei-Ying Kung, Chang-Su Kim, C.-C. Jay Kuo\",\"doi\":\"10.1117/12.510847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-hypothesis motion compensated prediction (MHMCP) predicts a block from a weighted sum of multiple reference blocks in the frame buffer. By efficiently combining these reference blocks, MHMCP can provide less prediction errors so as to reduce the coding bit rates. Although MHMCP was originally proposed to achieve high coding efficiency, it has been observed recently that MHMCP can also enhance the error resilient property of compressed video. In this work, we investigate the error propagation effect in the MHMCP coder. More specifically, we study how the multi-hypothesis number as well as hypothesis coefficients influence the strength of propagating errors. Simulation results are given to confirm our analysis. Finally, several design principles for the MHMCP coder are derived based on our analysis and simulation results.\",\"PeriodicalId\":282161,\"journal\":{\"name\":\"SPIE ITCom\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE ITCom\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.510847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE ITCom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.510847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Error-resilient video transmission with multi-hypothesis motion-compensated prediction
Multi-hypothesis motion compensated prediction (MHMCP) predicts a block from a weighted sum of multiple reference blocks in the frame buffer. By efficiently combining these reference blocks, MHMCP can provide less prediction errors so as to reduce the coding bit rates. Although MHMCP was originally proposed to achieve high coding efficiency, it has been observed recently that MHMCP can also enhance the error resilient property of compressed video. In this work, we investigate the error propagation effect in the MHMCP coder. More specifically, we study how the multi-hypothesis number as well as hypothesis coefficients influence the strength of propagating errors. Simulation results are given to confirm our analysis. Finally, several design principles for the MHMCP coder are derived based on our analysis and simulation results.