{"title":"多处理器上节省工作的最优实时调度","authors":"Kenji Funaoka, S. Kato, N. Yamasaki","doi":"10.1109/ECRTS.2008.15","DOIUrl":null,"url":null,"abstract":"Extended T-N plane abstraction (E-TNPA) proposed in this paper realizes work-conserving and efficient optimal real-time scheduling on multiprocessors relative to the original T-N plane abstraction (TNPA). Additionally a scheduling algorithm named NVNLF (no virtual nodal laxity first) is presented for E-TNPA. E-TNPA and NVNLF relax the restrictions of TNPA and the traditional algorithm LNREF, respectively. Arbitrary tasks can be preferentially executed by both tie-breaking rules and time apportionment policies in accordance with various system requirements with several restrictions. Simulation results show that E-TNPA significantly reduces the number of task preemptions as compared to TNPA.","PeriodicalId":176327,"journal":{"name":"2008 Euromicro Conference on Real-Time Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Work-Conserving Optimal Real-Time Scheduling on Multiprocessors\",\"authors\":\"Kenji Funaoka, S. Kato, N. Yamasaki\",\"doi\":\"10.1109/ECRTS.2008.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended T-N plane abstraction (E-TNPA) proposed in this paper realizes work-conserving and efficient optimal real-time scheduling on multiprocessors relative to the original T-N plane abstraction (TNPA). Additionally a scheduling algorithm named NVNLF (no virtual nodal laxity first) is presented for E-TNPA. E-TNPA and NVNLF relax the restrictions of TNPA and the traditional algorithm LNREF, respectively. Arbitrary tasks can be preferentially executed by both tie-breaking rules and time apportionment policies in accordance with various system requirements with several restrictions. Simulation results show that E-TNPA significantly reduces the number of task preemptions as compared to TNPA.\",\"PeriodicalId\":176327,\"journal\":{\"name\":\"2008 Euromicro Conference on Real-Time Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Euromicro Conference on Real-Time Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECRTS.2008.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Euromicro Conference on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECRTS.2008.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Work-Conserving Optimal Real-Time Scheduling on Multiprocessors
Extended T-N plane abstraction (E-TNPA) proposed in this paper realizes work-conserving and efficient optimal real-time scheduling on multiprocessors relative to the original T-N plane abstraction (TNPA). Additionally a scheduling algorithm named NVNLF (no virtual nodal laxity first) is presented for E-TNPA. E-TNPA and NVNLF relax the restrictions of TNPA and the traditional algorithm LNREF, respectively. Arbitrary tasks can be preferentially executed by both tie-breaking rules and time apportionment policies in accordance with various system requirements with several restrictions. Simulation results show that E-TNPA significantly reduces the number of task preemptions as compared to TNPA.