一种基于奖励函数的关键词识别新方法

Y. B. Ayed, D. Fohr, J. Haton, G. Chollet
{"title":"一种基于奖励函数的关键词识别新方法","authors":"Y. B. Ayed, D. Fohr, J. Haton, G. Chollet","doi":"10.1109/ISSPA.2003.1224726","DOIUrl":null,"url":null,"abstract":"In this paper, we compare the performance achieved by different word-spotting techniques based on hidden Markov models. We propose two methods to detect keywords, the first one uses a GMM (Gaussian mixture model) as a filler model to absorb the out-of-vocabulary words. The second is an alternative approach which does not attempt to model out-of-vocabulary words, instead, it uses a loop phonemes based grammar. Furthermore, it uses different reward functions to favour the recognition of the keywords phonemes.","PeriodicalId":264814,"journal":{"name":"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new keyword spotting approach based on reward function\",\"authors\":\"Y. B. Ayed, D. Fohr, J. Haton, G. Chollet\",\"doi\":\"10.1109/ISSPA.2003.1224726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we compare the performance achieved by different word-spotting techniques based on hidden Markov models. We propose two methods to detect keywords, the first one uses a GMM (Gaussian mixture model) as a filler model to absorb the out-of-vocabulary words. The second is an alternative approach which does not attempt to model out-of-vocabulary words, instead, it uses a loop phonemes based grammar. Furthermore, it uses different reward functions to favour the recognition of the keywords phonemes.\",\"PeriodicalId\":264814,\"journal\":{\"name\":\"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2003.1224726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2003.1224726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们比较了不同的基于隐马尔可夫模型的单词识别技术所取得的性能。我们提出了两种方法来检测关键词,第一种方法使用高斯混合模型作为填充模型来吸收词汇表外的单词。第二种是另一种方法,它不试图对词汇表外的单词进行建模,而是使用基于循环音素的语法。此外,它使用不同的奖励功能来支持关键字音素的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new keyword spotting approach based on reward function
In this paper, we compare the performance achieved by different word-spotting techniques based on hidden Markov models. We propose two methods to detect keywords, the first one uses a GMM (Gaussian mixture model) as a filler model to absorb the out-of-vocabulary words. The second is an alternative approach which does not attempt to model out-of-vocabulary words, instead, it uses a loop phonemes based grammar. Furthermore, it uses different reward functions to favour the recognition of the keywords phonemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信