基于粒子群优化的负荷模型研究

Yanzhi Pang, Yonghai Xu, S. Tao
{"title":"基于粒子群优化的负荷模型研究","authors":"Yanzhi Pang, Yonghai Xu, S. Tao","doi":"10.1109/ICIEA.2016.7603654","DOIUrl":null,"url":null,"abstract":"Based on comparing between the Composite Load Model (CLM) with the Synthesis Load Model (SLM), the SLM has been adopted in this paper. In view of the load model parameter identification's characteristics of complexity and low accuracy, a parameter identification method of the SLM based on Particle Swarm Optimization algorithm was proposed and used in the specific case study. It is shown by the case that the power curves simulated are closer to the measured ones, the particle swarm optimization has a certain superiority in the aspect of load model parameter identification, and the synthesis load model is reasonable.","PeriodicalId":283114,"journal":{"name":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A study on the load model based on particle swarm optimization\",\"authors\":\"Yanzhi Pang, Yonghai Xu, S. Tao\",\"doi\":\"10.1109/ICIEA.2016.7603654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on comparing between the Composite Load Model (CLM) with the Synthesis Load Model (SLM), the SLM has been adopted in this paper. In view of the load model parameter identification's characteristics of complexity and low accuracy, a parameter identification method of the SLM based on Particle Swarm Optimization algorithm was proposed and used in the specific case study. It is shown by the case that the power curves simulated are closer to the measured ones, the particle swarm optimization has a certain superiority in the aspect of load model parameter identification, and the synthesis load model is reasonable.\",\"PeriodicalId\":283114,\"journal\":{\"name\":\"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2016.7603654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2016.7603654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在比较了复合荷载模型(CLM)和综合荷载模型(SLM)的基础上,本文采用了综合荷载模型(SLM)。针对负荷模型参数辨识复杂、精度低的特点,提出了一种基于粒子群优化算法的SLM参数辨识方法,并进行了具体案例研究。算例表明,仿真得到的功率曲线与实测曲线更接近,粒子群算法在负荷模型参数辨识方面具有一定的优势,综合负荷模型是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on the load model based on particle swarm optimization
Based on comparing between the Composite Load Model (CLM) with the Synthesis Load Model (SLM), the SLM has been adopted in this paper. In view of the load model parameter identification's characteristics of complexity and low accuracy, a parameter identification method of the SLM based on Particle Swarm Optimization algorithm was proposed and used in the specific case study. It is shown by the case that the power curves simulated are closer to the measured ones, the particle swarm optimization has a certain superiority in the aspect of load model parameter identification, and the synthesis load model is reasonable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信