{"title":"具有亚毫米波带宽的可缩放二氧化钒开关:具有改进RF带宽和功率处理的VO2开关","authors":"C. Hillman, P. Stupar, Z. Griffith","doi":"10.1109/CSICS.2017.8240450","DOIUrl":null,"url":null,"abstract":"A new generation of vanadium dioxide phase change switches have been designed, fabricated, and characterized. These switches were designed to dramatically reduce on-state shunt-capacitance associated with the switch's heater while also increasing the off-state resistance. The result is a switch architecture whose channel dimensions can be scaled to increase power handling while maintaining unparalleled low loss. We will present SPST switches with on-state insertion loss < 1dB at 230GHz and power handling of 1W as well as switches with 5W of power handling and only 0.6 dB insertion loss at 67 GHz. We also present a MMIC SPDT switch having insertion loss < 0.6 dB and isolation > 35 dB from DC to 67 GHz while offering 1W power handling. A wide variety of SPNT switch designs is possible with MMW bandwidth. We have not identified any switch technology having reported superior bandwidth and low insertion loss.","PeriodicalId":129729,"journal":{"name":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Scaleable vanadium dioxide switches with submillimeterwave bandwidth: VO2 switches with impoved RF bandwidth and power handling\",\"authors\":\"C. Hillman, P. Stupar, Z. Griffith\",\"doi\":\"10.1109/CSICS.2017.8240450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new generation of vanadium dioxide phase change switches have been designed, fabricated, and characterized. These switches were designed to dramatically reduce on-state shunt-capacitance associated with the switch's heater while also increasing the off-state resistance. The result is a switch architecture whose channel dimensions can be scaled to increase power handling while maintaining unparalleled low loss. We will present SPST switches with on-state insertion loss < 1dB at 230GHz and power handling of 1W as well as switches with 5W of power handling and only 0.6 dB insertion loss at 67 GHz. We also present a MMIC SPDT switch having insertion loss < 0.6 dB and isolation > 35 dB from DC to 67 GHz while offering 1W power handling. A wide variety of SPNT switch designs is possible with MMW bandwidth. We have not identified any switch technology having reported superior bandwidth and low insertion loss.\",\"PeriodicalId\":129729,\"journal\":{\"name\":\"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2017.8240450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2017.8240450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scaleable vanadium dioxide switches with submillimeterwave bandwidth: VO2 switches with impoved RF bandwidth and power handling
A new generation of vanadium dioxide phase change switches have been designed, fabricated, and characterized. These switches were designed to dramatically reduce on-state shunt-capacitance associated with the switch's heater while also increasing the off-state resistance. The result is a switch architecture whose channel dimensions can be scaled to increase power handling while maintaining unparalleled low loss. We will present SPST switches with on-state insertion loss < 1dB at 230GHz and power handling of 1W as well as switches with 5W of power handling and only 0.6 dB insertion loss at 67 GHz. We also present a MMIC SPDT switch having insertion loss < 0.6 dB and isolation > 35 dB from DC to 67 GHz while offering 1W power handling. A wide variety of SPNT switch designs is possible with MMW bandwidth. We have not identified any switch technology having reported superior bandwidth and low insertion loss.