低温连接技术对硅模具应力状态的影响

T. Herboth, M. Guenther, R. Zeiser, J. Wilde
{"title":"低温连接技术对硅模具应力状态的影响","authors":"T. Herboth, M. Guenther, R. Zeiser, J. Wilde","doi":"10.1109/EUROSIME.2013.6529945","DOIUrl":null,"url":null,"abstract":"The aim of this study was to analyse the stress state in silicon dies joined by Low Temperature Joining Technology (LTJT) based on measurements and simulation results. The focus was to establish a method to determine the initial stress state and stress-free temperature in a silicon die attached to a copper substrate after the joining process. An approach to analyse the evolution of the stress state after sintering and during thermal cycling was developed.","PeriodicalId":270532,"journal":{"name":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of stress states in silicon dies induced by the Low Temperature Joining Technology\",\"authors\":\"T. Herboth, M. Guenther, R. Zeiser, J. Wilde\",\"doi\":\"10.1109/EUROSIME.2013.6529945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study was to analyse the stress state in silicon dies joined by Low Temperature Joining Technology (LTJT) based on measurements and simulation results. The focus was to establish a method to determine the initial stress state and stress-free temperature in a silicon die attached to a copper substrate after the joining process. An approach to analyse the evolution of the stress state after sintering and during thermal cycling was developed.\",\"PeriodicalId\":270532,\"journal\":{\"name\":\"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2013.6529945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2013.6529945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是在测量和模拟结果的基础上分析低温连接技术(LTJT)连接硅模具的应力状态。重点是建立一种方法来确定连接过程后附着在铜衬底上的硅模的初始应力状态和无应力温度。提出了一种分析烧结后和热循环过程中应力状态演变的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of stress states in silicon dies induced by the Low Temperature Joining Technology
The aim of this study was to analyse the stress state in silicon dies joined by Low Temperature Joining Technology (LTJT) based on measurements and simulation results. The focus was to establish a method to determine the initial stress state and stress-free temperature in a silicon die attached to a copper substrate after the joining process. An approach to analyse the evolution of the stress state after sintering and during thermal cycling was developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信