气液流动中空隙率测量的压差技术

Ammar Zeghloul, A. Azzi, Nabil Ghendour, A. Berrouk
{"title":"气液流动中空隙率测量的压差技术","authors":"Ammar Zeghloul, A. Azzi, Nabil Ghendour, A. Berrouk","doi":"10.53907/enpesj.v1i2.61","DOIUrl":null,"url":null,"abstract":"Two-phase Gas-liquid flows have many industrial uses, such as hydrocarbon transportation and energy production. The knowledge and an accurate determination of the gas phase's proportion rate in the two-phase mixture known as the gas void fraction is necessary for optimal and secure sizing of the installations where this kind of flow takes place. This paper focuses on the possibility of using a cost-effective differential pressure transmitter to measure the void fraction parameter. It is obtained using a mathematical model derived from the energy balance equation and the measured pressure drop from the vertical upward gas-liquid flow. Results on flow void fraction obtained through the use of the conductance probe method, are used to validate those derived from the pressure drop that is evaluated by employing the differential pressure transmitter. The measurement accuracy of the void fraction measured using the pressure drop technique, is found to be principally affected by the flow pattern. Moreover, the slip ratio between the phases was the primary factor influencing the void fraction measurement by the differential pressure technique.","PeriodicalId":200690,"journal":{"name":"ENP Engineering Science Journal","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Differential Pressure Technique for Void Fraction Measurement in Gas-Liquid Flow\",\"authors\":\"Ammar Zeghloul, A. Azzi, Nabil Ghendour, A. Berrouk\",\"doi\":\"10.53907/enpesj.v1i2.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-phase Gas-liquid flows have many industrial uses, such as hydrocarbon transportation and energy production. The knowledge and an accurate determination of the gas phase's proportion rate in the two-phase mixture known as the gas void fraction is necessary for optimal and secure sizing of the installations where this kind of flow takes place. This paper focuses on the possibility of using a cost-effective differential pressure transmitter to measure the void fraction parameter. It is obtained using a mathematical model derived from the energy balance equation and the measured pressure drop from the vertical upward gas-liquid flow. Results on flow void fraction obtained through the use of the conductance probe method, are used to validate those derived from the pressure drop that is evaluated by employing the differential pressure transmitter. The measurement accuracy of the void fraction measured using the pressure drop technique, is found to be principally affected by the flow pattern. Moreover, the slip ratio between the phases was the primary factor influencing the void fraction measurement by the differential pressure technique.\",\"PeriodicalId\":200690,\"journal\":{\"name\":\"ENP Engineering Science Journal\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ENP Engineering Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53907/enpesj.v1i2.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ENP Engineering Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53907/enpesj.v1i2.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气液两相流有许多工业用途,如碳氢化合物运输和能源生产。了解和准确确定两相混合物中气相的比例率,即气体空隙率,对于这种流动发生的装置的最佳和安全尺寸是必要的。本文重点讨论了采用经济有效的差压变送器测量孔隙率参数的可能性。利用能量平衡方程和测量的垂直向上气液流动的压降建立数学模型,得到了它。通过使用电导探针法获得的流动空隙率结果用于验证由差压变送器评估的压降得出的结果。用压降法测量的空隙率的测量精度主要受流型的影响。此外,相间滑移比是影响差压法测定孔隙率的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Differential Pressure Technique for Void Fraction Measurement in Gas-Liquid Flow
Two-phase Gas-liquid flows have many industrial uses, such as hydrocarbon transportation and energy production. The knowledge and an accurate determination of the gas phase's proportion rate in the two-phase mixture known as the gas void fraction is necessary for optimal and secure sizing of the installations where this kind of flow takes place. This paper focuses on the possibility of using a cost-effective differential pressure transmitter to measure the void fraction parameter. It is obtained using a mathematical model derived from the energy balance equation and the measured pressure drop from the vertical upward gas-liquid flow. Results on flow void fraction obtained through the use of the conductance probe method, are used to validate those derived from the pressure drop that is evaluated by employing the differential pressure transmitter. The measurement accuracy of the void fraction measured using the pressure drop technique, is found to be principally affected by the flow pattern. Moreover, the slip ratio between the phases was the primary factor influencing the void fraction measurement by the differential pressure technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信