{"title":"自我保护维持了元胞自动机中人工自我复制子进化的多样性","authors":"Hiroki Sayama","doi":"10.1109/EH.2003.1217673","DOIUrl":null,"url":null,"abstract":"The concept of \"self-protection\", a capability of an organism to protect itself from exogenous attacks, is introduced to the design of artificial evolutionary systems as a possible method to create and maintain diversity in the population. Three different mechanisms of self-protection are considered and implemented on a cellular automata based evolutionary system, the evoloop. Simulation results imply a positive effect of those mechanisms on diversity maintenance, especially when the self-protection is moderate so that it conserves both the attacker and the attacked.","PeriodicalId":134823,"journal":{"name":"NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings.","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-protection maintains diversity of artificial self-replicators evolving in cellular automata\",\"authors\":\"Hiroki Sayama\",\"doi\":\"10.1109/EH.2003.1217673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of \\\"self-protection\\\", a capability of an organism to protect itself from exogenous attacks, is introduced to the design of artificial evolutionary systems as a possible method to create and maintain diversity in the population. Three different mechanisms of self-protection are considered and implemented on a cellular automata based evolutionary system, the evoloop. Simulation results imply a positive effect of those mechanisms on diversity maintenance, especially when the self-protection is moderate so that it conserves both the attacker and the attacked.\",\"PeriodicalId\":134823,\"journal\":{\"name\":\"NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings.\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EH.2003.1217673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2003.1217673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-protection maintains diversity of artificial self-replicators evolving in cellular automata
The concept of "self-protection", a capability of an organism to protect itself from exogenous attacks, is introduced to the design of artificial evolutionary systems as a possible method to create and maintain diversity in the population. Three different mechanisms of self-protection are considered and implemented on a cellular automata based evolutionary system, the evoloop. Simulation results imply a positive effect of those mechanisms on diversity maintenance, especially when the self-protection is moderate so that it conserves both the attacker and the attacked.