水下环境下ROV辅助磁感应通信现场试验

Debing Wei, S. Soto, Javier Garcia, Aaron T. Becker, Li Wang, M. Pan
{"title":"水下环境下ROV辅助磁感应通信现场试验","authors":"Debing Wei, S. Soto, Javier Garcia, Aaron T. Becker, Li Wang, M. Pan","doi":"10.1145/3291940.3291988","DOIUrl":null,"url":null,"abstract":"Magnetic Induction (MI) is a promising technique for near-field wireless underwater communications. Although the literature has some theoretical analyses and lab experiments for underwater MI communication, there is a lack of field tests in underwater environments, especially in subsea environments. In this paper, we leverage the remotely operated vehicle (ROV) and the remotely controlled boat (RCB) to develop an MI wireless communication system, and conduct field tests for MI communication performance in both fresh water and sea water. The experiment results show that even in the most challenging subsea environment, the MI communication has very good near-field transmission performance with a small coil antenna and low power consumption.","PeriodicalId":429405,"journal":{"name":"Proceedings of the 13th International Conference on Underwater Networks & Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"ROV assisted magnetic induction communication field tests in underwater environments\",\"authors\":\"Debing Wei, S. Soto, Javier Garcia, Aaron T. Becker, Li Wang, M. Pan\",\"doi\":\"10.1145/3291940.3291988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic Induction (MI) is a promising technique for near-field wireless underwater communications. Although the literature has some theoretical analyses and lab experiments for underwater MI communication, there is a lack of field tests in underwater environments, especially in subsea environments. In this paper, we leverage the remotely operated vehicle (ROV) and the remotely controlled boat (RCB) to develop an MI wireless communication system, and conduct field tests for MI communication performance in both fresh water and sea water. The experiment results show that even in the most challenging subsea environment, the MI communication has very good near-field transmission performance with a small coil antenna and low power consumption.\",\"PeriodicalId\":429405,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Underwater Networks & Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Underwater Networks & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3291940.3291988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Underwater Networks & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3291940.3291988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

磁感应技术是一种很有前途的近场水下无线通信技术。虽然文献对水下MI通信进行了一定的理论分析和实验室实验,但缺乏水下环境特别是海底环境的现场测试。本文利用遥控潜水器(ROV)和遥控船(RCB)开发了一种MI无线通信系统,并在淡水和海水中进行了MI通信性能的现场测试。实验结果表明,即使在最具挑战性的海底环境中,MI通信具有非常好的近场传输性能,具有小线圈天线和低功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ROV assisted magnetic induction communication field tests in underwater environments
Magnetic Induction (MI) is a promising technique for near-field wireless underwater communications. Although the literature has some theoretical analyses and lab experiments for underwater MI communication, there is a lack of field tests in underwater environments, especially in subsea environments. In this paper, we leverage the remotely operated vehicle (ROV) and the remotely controlled boat (RCB) to develop an MI wireless communication system, and conduct field tests for MI communication performance in both fresh water and sea water. The experiment results show that even in the most challenging subsea environment, the MI communication has very good near-field transmission performance with a small coil antenna and low power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信