Arima - jenkins方法应用程序预测每日移动数据的使用

Khalilah Nurfadila, Ilham Aksan
{"title":"Arima - jenkins方法应用程序预测每日移动数据的使用","authors":"Khalilah Nurfadila, Ilham Aksan","doi":"10.31605/jomta.v2i1.749","DOIUrl":null,"url":null,"abstract":"The Box-Jenkins method is one of the time forecasting methods series.  This method uses values in the past as the dependent variable and variable independently ignored.  The Box-Jenkins method has the advantage of being usable on non-stationary data can be used on all data patterns so that this method can be used to predict the daily use of cellular data.  The purpose of the study to find out the model and predict the amount of cellular data daily usage using data from March 10, 2020 to May 29, 2020. Results of the analysis shows the best model for daily use of cellular data is ARIMA (0,1,2). The best model meets the test requirements, namely the parameter significance test and diagnostic checking.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Aplikasi Metode Arima Box-Jenkins Untuk Meramalkan Penggunaan Harian Data Seluler\",\"authors\":\"Khalilah Nurfadila, Ilham Aksan\",\"doi\":\"10.31605/jomta.v2i1.749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Box-Jenkins method is one of the time forecasting methods series.  This method uses values in the past as the dependent variable and variable independently ignored.  The Box-Jenkins method has the advantage of being usable on non-stationary data can be used on all data patterns so that this method can be used to predict the daily use of cellular data.  The purpose of the study to find out the model and predict the amount of cellular data daily usage using data from March 10, 2020 to May 29, 2020. Results of the analysis shows the best model for daily use of cellular data is ARIMA (0,1,2). The best model meets the test requirements, namely the parameter significance test and diagnostic checking.\",\"PeriodicalId\":400972,\"journal\":{\"name\":\"Journal of Mathematics : Theory and Application\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics : Theory and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31605/jomta.v2i1.749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics : Theory and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31605/jomta.v2i1.749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

Box-Jenkins方法是时间预测方法系列中的一种。该方法使用过去的值作为因变量和独立忽略的变量。Box-Jenkins方法的优点是可用于非平稳数据,可用于所有数据模式,因此该方法可用于预测蜂窝数据的日常使用。本研究的目的是利用2020年3月10日至2020年5月29日的数据,找出模型并预测蜂窝数据的每日使用量。分析结果表明,最适合蜂窝数据日常使用的模型是ARIMA(0,1,2)。最佳模型满足检验要求,即参数显著性检验和诊断检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aplikasi Metode Arima Box-Jenkins Untuk Meramalkan Penggunaan Harian Data Seluler
The Box-Jenkins method is one of the time forecasting methods series.  This method uses values in the past as the dependent variable and variable independently ignored.  The Box-Jenkins method has the advantage of being usable on non-stationary data can be used on all data patterns so that this method can be used to predict the daily use of cellular data.  The purpose of the study to find out the model and predict the amount of cellular data daily usage using data from March 10, 2020 to May 29, 2020. Results of the analysis shows the best model for daily use of cellular data is ARIMA (0,1,2). The best model meets the test requirements, namely the parameter significance test and diagnostic checking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信