{"title":"l","authors":"Thomas Bräutigam","doi":"10.5771/9783741001109-133","DOIUrl":null,"url":null,"abstract":". We prove a non-vanishing result of modular L -values with quadratic twists, where the quadratic discriminants are in a short interval. Us- ing this fact and Waldspurger’s theorem, we improve the results of Balog-Ono[The chebotarev density theorem in short intervals and some questions of Serre, Journal of number theory. 91(2):356-371(2001)] on the non-vanishing of Fourier coefficients of half-integral weight eigenform.","PeriodicalId":108632,"journal":{"name":"Klassiker des deutschsprachigen Dokumentarfilms","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L\",\"authors\":\"Thomas Bräutigam\",\"doi\":\"10.5771/9783741001109-133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We prove a non-vanishing result of modular L -values with quadratic twists, where the quadratic discriminants are in a short interval. Us- ing this fact and Waldspurger’s theorem, we improve the results of Balog-Ono[The chebotarev density theorem in short intervals and some questions of Serre, Journal of number theory. 91(2):356-371(2001)] on the non-vanishing of Fourier coefficients of half-integral weight eigenform.\",\"PeriodicalId\":108632,\"journal\":{\"name\":\"Klassiker des deutschsprachigen Dokumentarfilms\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Klassiker des deutschsprachigen Dokumentarfilms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5771/9783741001109-133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Klassiker des deutschsprachigen Dokumentarfilms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5771/9783741001109-133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
. 我们证明了二次扭曲模L值的一个不消失结果,其中二次判别式在短区间内。利用这一事实和Waldspurger定理,改进了balogo - ono [the chebotarev density theorem]在短时间内的结果和Serre (Journal of数论)的一些问题。半积分权特征型傅里叶系数的不消失性[j]。
. We prove a non-vanishing result of modular L -values with quadratic twists, where the quadratic discriminants are in a short interval. Us- ing this fact and Waldspurger’s theorem, we improve the results of Balog-Ono[The chebotarev density theorem in short intervals and some questions of Serre, Journal of number theory. 91(2):356-371(2001)] on the non-vanishing of Fourier coefficients of half-integral weight eigenform.