具有时间尺度离散系统的H2和H∞控制

M. Mahmoud
{"title":"具有时间尺度离散系统的H2和H∞控制","authors":"M. Mahmoud","doi":"10.1109/ICSAI.2014.7009254","DOIUrl":null,"url":null,"abstract":"This paper addresses the feedback control design problem for a wide class of discrete-time systems possessing fast and slow modes. The slow and fast subsystems are considered to be completely controllable and observable. Based on the H∞ optimization criteria, a two-stage design procedure is developed using separate gain matrices for the fast and slow subsystems and computed using linear matrix inequalities. A composite control is designed to yield first-order approximations to the behavior of the discrete system. A typical application is presented to illustrate the design procedure.","PeriodicalId":143221,"journal":{"name":"The 2014 2nd International Conference on Systems and Informatics (ICSAI 2014)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H2 and H∞ control of discrete systems with time scales\",\"authors\":\"M. Mahmoud\",\"doi\":\"10.1109/ICSAI.2014.7009254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the feedback control design problem for a wide class of discrete-time systems possessing fast and slow modes. The slow and fast subsystems are considered to be completely controllable and observable. Based on the H∞ optimization criteria, a two-stage design procedure is developed using separate gain matrices for the fast and slow subsystems and computed using linear matrix inequalities. A composite control is designed to yield first-order approximations to the behavior of the discrete system. A typical application is presented to illustrate the design procedure.\",\"PeriodicalId\":143221,\"journal\":{\"name\":\"The 2014 2nd International Conference on Systems and Informatics (ICSAI 2014)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2014 2nd International Conference on Systems and Informatics (ICSAI 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2014.7009254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2014 2nd International Conference on Systems and Informatics (ICSAI 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2014.7009254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有快慢模式的离散系统的反馈控制设计问题。慢速和快速子系统被认为是完全可控和可观察的。基于H∞优化准则,对快、慢子系统分别采用单独增益矩阵,采用线性矩阵不等式进行了两阶段设计。复合控制被设计成对离散系统的行为产生一阶近似。给出了一个典型的应用来说明设计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H2 and H∞ control of discrete systems with time scales
This paper addresses the feedback control design problem for a wide class of discrete-time systems possessing fast and slow modes. The slow and fast subsystems are considered to be completely controllable and observable. Based on the H∞ optimization criteria, a two-stage design procedure is developed using separate gain matrices for the fast and slow subsystems and computed using linear matrix inequalities. A composite control is designed to yield first-order approximations to the behavior of the discrete system. A typical application is presented to illustrate the design procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信