{"title":"半导体微结构中隧道和垂直输运的超快光学研究","authors":"J. Shah","doi":"10.1364/qwoe.1989.wc1","DOIUrl":null,"url":null,"abstract":"Novel electronic properties of superlattices, double barrier diodes and other semiconductor microstructures have generated considerable current interest from fundamental as well as device points of views. One of the driving forces behind this interest is the possibility of novel high speed devices; e.g. Sollner et al [1] have shown very high frequency response for double barrier diodes. There are also a number of very interesting fundamental issues as proposed in the original work of Esaki and Tsu [2]. Some of this work has been recently reviewed by Esaki [3] and Capasso et al [4].","PeriodicalId":205579,"journal":{"name":"Quantum Wells for Optics and Optoelectronics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Optical Studies of Tunneling and Perpendicular Transport in Semiconductor Microstructures\",\"authors\":\"J. Shah\",\"doi\":\"10.1364/qwoe.1989.wc1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel electronic properties of superlattices, double barrier diodes and other semiconductor microstructures have generated considerable current interest from fundamental as well as device points of views. One of the driving forces behind this interest is the possibility of novel high speed devices; e.g. Sollner et al [1] have shown very high frequency response for double barrier diodes. There are also a number of very interesting fundamental issues as proposed in the original work of Esaki and Tsu [2]. Some of this work has been recently reviewed by Esaki [3] and Capasso et al [4].\",\"PeriodicalId\":205579,\"journal\":{\"name\":\"Quantum Wells for Optics and Optoelectronics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Wells for Optics and Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/qwoe.1989.wc1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Wells for Optics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/qwoe.1989.wc1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrafast Optical Studies of Tunneling and Perpendicular Transport in Semiconductor Microstructures
Novel electronic properties of superlattices, double barrier diodes and other semiconductor microstructures have generated considerable current interest from fundamental as well as device points of views. One of the driving forces behind this interest is the possibility of novel high speed devices; e.g. Sollner et al [1] have shown very high frequency response for double barrier diodes. There are also a number of very interesting fundamental issues as proposed in the original work of Esaki and Tsu [2]. Some of this work has been recently reviewed by Esaki [3] and Capasso et al [4].