人-机器人系统最优控制的人工辅助学习方法

Rizheng Tan, Zhiheng Xu
{"title":"人-机器人系统最优控制的人工辅助学习方法","authors":"Rizheng Tan, Zhiheng Xu","doi":"10.1109/ICRAE48301.2019.9043844","DOIUrl":null,"url":null,"abstract":"Human-Robot Systems (HRS) play a significant role in many applications, including manufacturing, critical infrastructure, and civil applications. However, conventional HRSs require predetermined reference before the start of the mission, which restricts the flexibility of the HRSs. In this paper, we use a recursive least-square approach to design Human-Aided Learning (HAL) algorithm, which allows the robot to learn the reference via the human inputs and system outputs. With multiple learning iterations, the robot can determine the reference. After estimating the reference, the robot can execute the tasks independently. We also design a low-pass filter to remove the impact of a high-frequency noise introduced by the human inputs. Finally, we use simulation to evaluate the performance of the proposed HAL algorithm.","PeriodicalId":270665,"journal":{"name":"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Human-Aided Learning Approach to Optimal Control of Human-Robot Systems\",\"authors\":\"Rizheng Tan, Zhiheng Xu\",\"doi\":\"10.1109/ICRAE48301.2019.9043844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-Robot Systems (HRS) play a significant role in many applications, including manufacturing, critical infrastructure, and civil applications. However, conventional HRSs require predetermined reference before the start of the mission, which restricts the flexibility of the HRSs. In this paper, we use a recursive least-square approach to design Human-Aided Learning (HAL) algorithm, which allows the robot to learn the reference via the human inputs and system outputs. With multiple learning iterations, the robot can determine the reference. After estimating the reference, the robot can execute the tasks independently. We also design a low-pass filter to remove the impact of a high-frequency noise introduced by the human inputs. Finally, we use simulation to evaluate the performance of the proposed HAL algorithm.\",\"PeriodicalId\":270665,\"journal\":{\"name\":\"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAE48301.2019.9043844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAE48301.2019.9043844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人机系统(HRS)在许多应用中发挥着重要作用,包括制造业、关键基础设施和民用应用。但是,传统的人力资源指标要求在特派团开始之前预先确定参考资料,这限制了人力资源指标的灵活性。在本文中,我们使用递归最小二乘方法来设计人类辅助学习(HAL)算法,该算法允许机器人通过人类输入和系统输出来学习参考。通过多次学习迭代,机器人可以确定参考点。在对参考进行估计后,机器人可以独立执行任务。我们还设计了一个低通滤波器,以消除人为输入引入的高频噪声的影响。最后,我们用仿真来评估所提出的HAL算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Human-Aided Learning Approach to Optimal Control of Human-Robot Systems
Human-Robot Systems (HRS) play a significant role in many applications, including manufacturing, critical infrastructure, and civil applications. However, conventional HRSs require predetermined reference before the start of the mission, which restricts the flexibility of the HRSs. In this paper, we use a recursive least-square approach to design Human-Aided Learning (HAL) algorithm, which allows the robot to learn the reference via the human inputs and system outputs. With multiple learning iterations, the robot can determine the reference. After estimating the reference, the robot can execute the tasks independently. We also design a low-pass filter to remove the impact of a high-frequency noise introduced by the human inputs. Finally, we use simulation to evaluate the performance of the proposed HAL algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信