R. Malladi, M. McPartlin, A. Joseph, H. Lafontaine, M. Doherty
{"title":"用于功率放大器的高效率SiGe HBTs的大信号建模","authors":"R. Malladi, M. McPartlin, A. Joseph, H. Lafontaine, M. Doherty","doi":"10.1109/BIPOL.2007.4351839","DOIUrl":null,"url":null,"abstract":"Large-signal compact modeling of SiGe HBTs integrated into a new IBM BICMOS technology geared towards high-efficiency power amplifiers is described. The technology exhibits a record 73% PAE at 5.75 GHz in class AB operation. A scalable HiCUM model (high current model) is developed to accurately model the DC, small-signal and large-signal characteristics. Results of DC, fT characteristics, output power, PAE and AM-PM performance of the device are discussed in detail.","PeriodicalId":356606,"journal":{"name":"2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Large Signal Modeling of High Efficiency SiGe HBTs for Power Amplifier Applications\",\"authors\":\"R. Malladi, M. McPartlin, A. Joseph, H. Lafontaine, M. Doherty\",\"doi\":\"10.1109/BIPOL.2007.4351839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-signal compact modeling of SiGe HBTs integrated into a new IBM BICMOS technology geared towards high-efficiency power amplifiers is described. The technology exhibits a record 73% PAE at 5.75 GHz in class AB operation. A scalable HiCUM model (high current model) is developed to accurately model the DC, small-signal and large-signal characteristics. Results of DC, fT characteristics, output power, PAE and AM-PM performance of the device are discussed in detail.\",\"PeriodicalId\":356606,\"journal\":{\"name\":\"2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIPOL.2007.4351839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIPOL.2007.4351839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large Signal Modeling of High Efficiency SiGe HBTs for Power Amplifier Applications
Large-signal compact modeling of SiGe HBTs integrated into a new IBM BICMOS technology geared towards high-efficiency power amplifiers is described. The technology exhibits a record 73% PAE at 5.75 GHz in class AB operation. A scalable HiCUM model (high current model) is developed to accurately model the DC, small-signal and large-signal characteristics. Results of DC, fT characteristics, output power, PAE and AM-PM performance of the device are discussed in detail.