消费型etf的长记忆与多重结构断裂检验

Malinda Maya, Jo-Hui Chen
{"title":"消费型etf的长记忆与多重结构断裂检验","authors":"Malinda Maya, Jo-Hui Chen","doi":"10.47260/jafb/1266","DOIUrl":null,"url":null,"abstract":"Abstract\n\nThis research examines the consumer exchange-traded funds (ETFs) in several industries based on long memory and multiple structural breaks. The autoregressive fractionally integrated moving average (ARFIMA) model indicates that consumer ETF returns in the media, consumer service, food and beverage, and consumer goods industries can be accurately predicted. The autoregressive fractionally integrated moving average and fractionally integrated generalized autoregressive conditional heteroskedasticity (ARFIMA-FIGARCH) model reveals that only the gaming and consumer goods industries have a long memory in volatility. This study establishes that through the iterated cumulative sum square test, multiple structural breaks exist in consumer ETF industries. Results prove that the consumer goods industry has a long memory and multiple structural breaks. Finally, the structural breaks in consumer ETFs have strong asymmetrical effects, indicating that all of the consumer ETF industries are generally unstable.\n\nKeywords: The Long Memory, Multiple Structural Breaks, Consumer ETFs, Iterated Cumulative Sums Squares Test.","PeriodicalId":330012,"journal":{"name":"Journal of Applied Finance & Banking","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs\",\"authors\":\"Malinda Maya, Jo-Hui Chen\",\"doi\":\"10.47260/jafb/1266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract\\n\\nThis research examines the consumer exchange-traded funds (ETFs) in several industries based on long memory and multiple structural breaks. The autoregressive fractionally integrated moving average (ARFIMA) model indicates that consumer ETF returns in the media, consumer service, food and beverage, and consumer goods industries can be accurately predicted. The autoregressive fractionally integrated moving average and fractionally integrated generalized autoregressive conditional heteroskedasticity (ARFIMA-FIGARCH) model reveals that only the gaming and consumer goods industries have a long memory in volatility. This study establishes that through the iterated cumulative sum square test, multiple structural breaks exist in consumer ETF industries. Results prove that the consumer goods industry has a long memory and multiple structural breaks. Finally, the structural breaks in consumer ETFs have strong asymmetrical effects, indicating that all of the consumer ETF industries are generally unstable.\\n\\nKeywords: The Long Memory, Multiple Structural Breaks, Consumer ETFs, Iterated Cumulative Sums Squares Test.\",\"PeriodicalId\":330012,\"journal\":{\"name\":\"Journal of Applied Finance & Banking\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Finance & Banking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47260/jafb/1266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Finance & Banking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47260/jafb/1266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究基于长记忆和多重结构断裂对几个行业的消费者交易所交易基金(etf)进行了检验。自回归分数积分移动平均(ARFIMA)模型表明,媒体、消费者服务、食品饮料和消费品行业的消费者ETF回报可以准确预测。自回归分数积分移动平均和分数积分广义自回归条件异方差(ARFIMA-FIGARCH)模型表明,只有游戏和消费品行业对波动率具有较长的记忆。本研究通过迭代累积平方和检验证实,消费ETF行业存在多重结构性断裂。结果表明,消费品行业具有较长的记忆性和多重结构性断裂。最后,消费者ETF的结构性断裂具有很强的不对称效应,表明所有的消费者ETF行业普遍不稳定。关键词:长记忆、多重结构断裂、消费者etf、迭代累积平方和检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs
Abstract This research examines the consumer exchange-traded funds (ETFs) in several industries based on long memory and multiple structural breaks. The autoregressive fractionally integrated moving average (ARFIMA) model indicates that consumer ETF returns in the media, consumer service, food and beverage, and consumer goods industries can be accurately predicted. The autoregressive fractionally integrated moving average and fractionally integrated generalized autoregressive conditional heteroskedasticity (ARFIMA-FIGARCH) model reveals that only the gaming and consumer goods industries have a long memory in volatility. This study establishes that through the iterated cumulative sum square test, multiple structural breaks exist in consumer ETF industries. Results prove that the consumer goods industry has a long memory and multiple structural breaks. Finally, the structural breaks in consumer ETFs have strong asymmetrical effects, indicating that all of the consumer ETF industries are generally unstable. Keywords: The Long Memory, Multiple Structural Breaks, Consumer ETFs, Iterated Cumulative Sums Squares Test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信