基于感兴趣区域融合的三维人脸识别

M. Belahcene, A. Chouchane, H. Ouamane
{"title":"基于感兴趣区域融合的三维人脸识别","authors":"M. Belahcene, A. Chouchane, H. Ouamane","doi":"10.1109/SIU.2014.6830718","DOIUrl":null,"url":null,"abstract":"We propose a face recognition system insensitive to expressions. This system uses the fusion by concatenating the entire face with the regions of interest (nose, mouth, right eye and left eye). To enhance the discriminant information phases of Gabor filter are used. The Principal Component Analysis (PCA) + Enhanced Fisher linear discriminant Model (EFM) are applied to the data to find a reduced basis projection and discriminant. The classification is usually performed using a single distance measure in the final multidimensional space. In this work we use a support vector machine (SVM) architecture with one against all. The model is studied and applied to the CASIA color database and gives a recognition rate of overall evaluation RReval = 94.30% and the test set RRtest = 81.30%.","PeriodicalId":384835,"journal":{"name":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"3D face recognition in presence of expressions by fusion regions of interest\",\"authors\":\"M. Belahcene, A. Chouchane, H. Ouamane\",\"doi\":\"10.1109/SIU.2014.6830718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a face recognition system insensitive to expressions. This system uses the fusion by concatenating the entire face with the regions of interest (nose, mouth, right eye and left eye). To enhance the discriminant information phases of Gabor filter are used. The Principal Component Analysis (PCA) + Enhanced Fisher linear discriminant Model (EFM) are applied to the data to find a reduced basis projection and discriminant. The classification is usually performed using a single distance measure in the final multidimensional space. In this work we use a support vector machine (SVM) architecture with one against all. The model is studied and applied to the CASIA color database and gives a recognition rate of overall evaluation RReval = 94.30% and the test set RRtest = 81.30%.\",\"PeriodicalId\":384835,\"journal\":{\"name\":\"2014 22nd Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2014.6830718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2014.6830718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种对表情不敏感的人脸识别系统。该系统通过将整个脸部与感兴趣的区域(鼻子、嘴巴、右眼和左眼)连接起来进行融合。为了提高识别能力,采用了Gabor滤波器。采用主成分分析(PCA) +增强型Fisher线性判别模型(EFM)对数据进行简化基投影和判别。分类通常使用最终多维空间中的单个距离度量来执行。在这项工作中,我们使用一对全的支持向量机(SVM)架构。对该模型进行研究并应用于CASIA颜色数据库,得到了整体评价识别率RReval = 94.30%,测试集RRtest = 81.30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D face recognition in presence of expressions by fusion regions of interest
We propose a face recognition system insensitive to expressions. This system uses the fusion by concatenating the entire face with the regions of interest (nose, mouth, right eye and left eye). To enhance the discriminant information phases of Gabor filter are used. The Principal Component Analysis (PCA) + Enhanced Fisher linear discriminant Model (EFM) are applied to the data to find a reduced basis projection and discriminant. The classification is usually performed using a single distance measure in the final multidimensional space. In this work we use a support vector machine (SVM) architecture with one against all. The model is studied and applied to the CASIA color database and gives a recognition rate of overall evaluation RReval = 94.30% and the test set RRtest = 81.30%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信