OFDM信号循环平稳检测器的FPGA实现

Douglas Allan, L. Crockett, Stephan Weiss, Kenneth Stuart, R. Stewart
{"title":"OFDM信号循环平稳检测器的FPGA实现","authors":"Douglas Allan, L. Crockett, Stephan Weiss, Kenneth Stuart, R. Stewart","doi":"10.1109/EUSIPCO.2016.7760328","DOIUrl":null,"url":null,"abstract":"Due to the ubiquity of Orthogonal Frequency Division Multiplexing (OFDM) based communications standards such as IEEE 802.11 a/g/n and 3GPP Long Term Evolution (LTE), a growing interest has developed in techniques for reliably detecting the presence of these signals in dynamic radio systems. A popular approach for detection is to exploit the cyclostationary nature of OFDM communications signals. In this paper, we focus on a frequency domain cyclostationary detection algorithm first introduced by Giannakis and Dandawate and study its performance in detecting IEEE 802.11a OFDM signals in the presence of practical radio impairments such as Carrier Frequency offset (CFO), Phase Noise, I/Q Imbalance, Multipath Fading and DC offset. We then present a hardware implementation of this algorithm developed using MathWorks HDL Coder and provide implementation results after targeting to a Xilinx 7 Series FPGA device.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"FPGA implementation of a cyclostationary detector for OFDM signals\",\"authors\":\"Douglas Allan, L. Crockett, Stephan Weiss, Kenneth Stuart, R. Stewart\",\"doi\":\"10.1109/EUSIPCO.2016.7760328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the ubiquity of Orthogonal Frequency Division Multiplexing (OFDM) based communications standards such as IEEE 802.11 a/g/n and 3GPP Long Term Evolution (LTE), a growing interest has developed in techniques for reliably detecting the presence of these signals in dynamic radio systems. A popular approach for detection is to exploit the cyclostationary nature of OFDM communications signals. In this paper, we focus on a frequency domain cyclostationary detection algorithm first introduced by Giannakis and Dandawate and study its performance in detecting IEEE 802.11a OFDM signals in the presence of practical radio impairments such as Carrier Frequency offset (CFO), Phase Noise, I/Q Imbalance, Multipath Fading and DC offset. We then present a hardware implementation of this algorithm developed using MathWorks HDL Coder and provide implementation results after targeting to a Xilinx 7 Series FPGA device.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于基于正交频分复用(OFDM)的通信标准(如IEEE 802.11 a/g/n和3GPP长期演进(LTE))的普遍存在,人们对在动态无线电系统中可靠检测这些信号的技术越来越感兴趣。一种流行的检测方法是利用OFDM通信信号的循环平稳特性。在本文中,我们重点研究了由Giannakis和Dandawate首先提出的频域循环平稳检测算法,并研究了其在存在载波频率偏移(CFO)、相位噪声、I/Q不平衡、多径衰落和直流偏移等实际无线电损伤的情况下检测IEEE 802.11a OFDM信号的性能。然后,我们提出了使用MathWorks HDL编码器开发的该算法的硬件实现,并提供了针对Xilinx 7系列FPGA设备的实现结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA implementation of a cyclostationary detector for OFDM signals
Due to the ubiquity of Orthogonal Frequency Division Multiplexing (OFDM) based communications standards such as IEEE 802.11 a/g/n and 3GPP Long Term Evolution (LTE), a growing interest has developed in techniques for reliably detecting the presence of these signals in dynamic radio systems. A popular approach for detection is to exploit the cyclostationary nature of OFDM communications signals. In this paper, we focus on a frequency domain cyclostationary detection algorithm first introduced by Giannakis and Dandawate and study its performance in detecting IEEE 802.11a OFDM signals in the presence of practical radio impairments such as Carrier Frequency offset (CFO), Phase Noise, I/Q Imbalance, Multipath Fading and DC offset. We then present a hardware implementation of this algorithm developed using MathWorks HDL Coder and provide implementation results after targeting to a Xilinx 7 Series FPGA device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信