E. Hapsari, Rahul Kumar, G. Sheu, Shao-Ming Yang, T. Anil
{"title":"工艺集成同类最佳规格电阻20V至60V 0.18µm双极CMOS DMOS技术","authors":"E. Hapsari, Rahul Kumar, G. Sheu, Shao-Ming Yang, T. Anil","doi":"10.1109/NMDC.2013.6707471","DOIUrl":null,"url":null,"abstract":"The evolution of Bipolar CMOS DMOS (BCD) technology leads in the improvement of design technology to produce better device performance with fabrication cost effectiveness as concerned. In this paper, 0.18μm BCD technology with linear p-top layer N-channel LDMOS structure from 20V to 60V is presented with best in class Ron for both N-channel and P-channel LDMOS compared to recent BCD technology works. The optimization of current gain of 20V BJT has been done by adjustment of emitter width and boron doping concentration of base with increasing of current gain up to ten times higher without significantly change the breakdown voltage.","PeriodicalId":112068,"journal":{"name":"2013 IEEE 8th Nanotechnology Materials and Devices Conference (NMDC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process integration of best in class specific-on resistance of 20V to 60V 0.18µm bipolar CMOS DMOS technology\",\"authors\":\"E. Hapsari, Rahul Kumar, G. Sheu, Shao-Ming Yang, T. Anil\",\"doi\":\"10.1109/NMDC.2013.6707471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution of Bipolar CMOS DMOS (BCD) technology leads in the improvement of design technology to produce better device performance with fabrication cost effectiveness as concerned. In this paper, 0.18μm BCD technology with linear p-top layer N-channel LDMOS structure from 20V to 60V is presented with best in class Ron for both N-channel and P-channel LDMOS compared to recent BCD technology works. The optimization of current gain of 20V BJT has been done by adjustment of emitter width and boron doping concentration of base with increasing of current gain up to ten times higher without significantly change the breakdown voltage.\",\"PeriodicalId\":112068,\"journal\":{\"name\":\"2013 IEEE 8th Nanotechnology Materials and Devices Conference (NMDC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 8th Nanotechnology Materials and Devices Conference (NMDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NMDC.2013.6707471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC.2013.6707471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Process integration of best in class specific-on resistance of 20V to 60V 0.18µm bipolar CMOS DMOS technology
The evolution of Bipolar CMOS DMOS (BCD) technology leads in the improvement of design technology to produce better device performance with fabrication cost effectiveness as concerned. In this paper, 0.18μm BCD technology with linear p-top layer N-channel LDMOS structure from 20V to 60V is presented with best in class Ron for both N-channel and P-channel LDMOS compared to recent BCD technology works. The optimization of current gain of 20V BJT has been done by adjustment of emitter width and boron doping concentration of base with increasing of current gain up to ten times higher without significantly change the breakdown voltage.