{"title":"基于FPGA的深度神经网络快速原型设计","authors":"Wonjong Kim, Hyegang Jun","doi":"10.1109/ISOCC50952.2020.9333030","DOIUrl":null,"url":null,"abstract":"This paper describes a prototyping methodology for implementing deep neural network (DNN) models in hardware. From a DNN model developed in C or C++ programming language, we develop a hardware architecture using a SoC virtual platform and verify the functionality using FPGA board. It demonstrates the viability of using FPGAs for accelerating specific applications written in a high-level language. With the use of High-level Synthesis tools provided by Xilinx [3], it is shown to be possible to implement an FPGA design that would run the inference calculations required by the MobileNetV2 [1] Deep Neural Network. With minimal alterations to the C++ code developed for a software implementation of the MobileNetV2 where HDL code could be directly synthesized from the original C++ code, dramatically reducing the complexity of the project. Consequently, when the design was implemented on an FPGA, upwards of 5 times increase in speed was able to be realized when compared to similar processors (ARM7).","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Prototyping of a Deep Neural Network on an FPGA\",\"authors\":\"Wonjong Kim, Hyegang Jun\",\"doi\":\"10.1109/ISOCC50952.2020.9333030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a prototyping methodology for implementing deep neural network (DNN) models in hardware. From a DNN model developed in C or C++ programming language, we develop a hardware architecture using a SoC virtual platform and verify the functionality using FPGA board. It demonstrates the viability of using FPGAs for accelerating specific applications written in a high-level language. With the use of High-level Synthesis tools provided by Xilinx [3], it is shown to be possible to implement an FPGA design that would run the inference calculations required by the MobileNetV2 [1] Deep Neural Network. With minimal alterations to the C++ code developed for a software implementation of the MobileNetV2 where HDL code could be directly synthesized from the original C++ code, dramatically reducing the complexity of the project. Consequently, when the design was implemented on an FPGA, upwards of 5 times increase in speed was able to be realized when compared to similar processors (ARM7).\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9333030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9333030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Prototyping of a Deep Neural Network on an FPGA
This paper describes a prototyping methodology for implementing deep neural network (DNN) models in hardware. From a DNN model developed in C or C++ programming language, we develop a hardware architecture using a SoC virtual platform and verify the functionality using FPGA board. It demonstrates the viability of using FPGAs for accelerating specific applications written in a high-level language. With the use of High-level Synthesis tools provided by Xilinx [3], it is shown to be possible to implement an FPGA design that would run the inference calculations required by the MobileNetV2 [1] Deep Neural Network. With minimal alterations to the C++ code developed for a software implementation of the MobileNetV2 where HDL code could be directly synthesized from the original C++ code, dramatically reducing the complexity of the project. Consequently, when the design was implemented on an FPGA, upwards of 5 times increase in speed was able to be realized when compared to similar processors (ARM7).