用最小二乘有限元法模拟MESFET的流体动力学

Min Shen, M. Cheng
{"title":"用最小二乘有限元法模拟MESFET的流体动力学","authors":"Min Shen, M. Cheng","doi":"10.1109/ICCDCS.2000.869835","DOIUrl":null,"url":null,"abstract":"A least-squares finite element method is developed for the 2D hydrodynamic simulation of semiconductor devices. The hydrodynamic device equations coupled with the Poisson equation are formulated as one unified equation system in this least squares finite element scheme. The developed method is applied to simulation of a 2D MESFET with a 0.2 /spl mu/m gate to demonstrate its capability of handling the large gradients of variables and discontinuities of the boundary conditions.","PeriodicalId":301003,"journal":{"name":"Proceedings of the 2000 Third IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No.00TH8474)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic simulation of MESFET's using the least-squares finite element method\",\"authors\":\"Min Shen, M. Cheng\",\"doi\":\"10.1109/ICCDCS.2000.869835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A least-squares finite element method is developed for the 2D hydrodynamic simulation of semiconductor devices. The hydrodynamic device equations coupled with the Poisson equation are formulated as one unified equation system in this least squares finite element scheme. The developed method is applied to simulation of a 2D MESFET with a 0.2 /spl mu/m gate to demonstrate its capability of handling the large gradients of variables and discontinuities of the boundary conditions.\",\"PeriodicalId\":301003,\"journal\":{\"name\":\"Proceedings of the 2000 Third IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No.00TH8474)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Third IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No.00TH8474)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCDCS.2000.869835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Third IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No.00TH8474)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCDCS.2000.869835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立了半导体器件二维流体动力学模拟的最小二乘有限元方法。在最小二乘有限元格式中,将流体动力装置方程与泊松方程耦合成一个统一的方程组。将该方法应用于具有0.2 /spl mu/m栅极的二维MESFET仿真,验证了其处理大梯度变量和边界条件不连续的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrodynamic simulation of MESFET's using the least-squares finite element method
A least-squares finite element method is developed for the 2D hydrodynamic simulation of semiconductor devices. The hydrodynamic device equations coupled with the Poisson equation are formulated as one unified equation system in this least squares finite element scheme. The developed method is applied to simulation of a 2D MESFET with a 0.2 /spl mu/m gate to demonstrate its capability of handling the large gradients of variables and discontinuities of the boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信