利用用户上下文和网络信息进行移动应用程序使用预测

Konglin Zhu, Xiaoyi Zhang, Bin Xiang, Lin Zhang
{"title":"利用用户上下文和网络信息进行移动应用程序使用预测","authors":"Konglin Zhu, Xiaoyi Zhang, Bin Xiang, Lin Zhang","doi":"10.1145/2757513.2757519","DOIUrl":null,"url":null,"abstract":"The explosive increasing mobile Applications (Apps) have been attracting researchers and developers to investigate user preferences on various mobile Apps. Understanding mobile Apps usage pattern of end users will help to improve the quality of mobile Apps and meanwhile enhance the quality of experience of users. For instance, if the mobile device knows the App the user will launch, it can pre-load the App into memory and also put the quick launch icon on the home screen to speed up the App usage. In this paper, we collect mobile data from over 10,000 users and study the mobile Apps usage pattern from user perspective using the collected data on mobile devices, including time, location, last used App, network type, network speed and etc. We then use Naive Bayes and linear model to propose mobile App usage prediction method for the prediction of the next launched App by individuals. The result shows that the proposed App usage prediction method can reach 60% accuracy to predict the mobile App that will be launched by users.","PeriodicalId":102278,"journal":{"name":"Proceedings of the 7th International Workshop on Hot Topics in Planet-scale mObile computing and online Social neTworking","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Exploiting User Context and Network Information for Mobile Application Usage Prediction\",\"authors\":\"Konglin Zhu, Xiaoyi Zhang, Bin Xiang, Lin Zhang\",\"doi\":\"10.1145/2757513.2757519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The explosive increasing mobile Applications (Apps) have been attracting researchers and developers to investigate user preferences on various mobile Apps. Understanding mobile Apps usage pattern of end users will help to improve the quality of mobile Apps and meanwhile enhance the quality of experience of users. For instance, if the mobile device knows the App the user will launch, it can pre-load the App into memory and also put the quick launch icon on the home screen to speed up the App usage. In this paper, we collect mobile data from over 10,000 users and study the mobile Apps usage pattern from user perspective using the collected data on mobile devices, including time, location, last used App, network type, network speed and etc. We then use Naive Bayes and linear model to propose mobile App usage prediction method for the prediction of the next launched App by individuals. The result shows that the proposed App usage prediction method can reach 60% accuracy to predict the mobile App that will be launched by users.\",\"PeriodicalId\":102278,\"journal\":{\"name\":\"Proceedings of the 7th International Workshop on Hot Topics in Planet-scale mObile computing and online Social neTworking\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Workshop on Hot Topics in Planet-scale mObile computing and online Social neTworking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2757513.2757519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Workshop on Hot Topics in Planet-scale mObile computing and online Social neTworking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2757513.2757519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

爆炸式增长的移动应用程序(Apps)吸引了研究人员和开发人员调查用户对各种移动应用程序的偏好。了解终端用户的移动应用使用模式,有助于提高移动应用的质量,同时也能提升用户的体验质量。例如,如果移动设备知道用户要启动的应用程序,它可以将应用程序预加载到内存中,并在主屏幕上放置快速启动图标,以加快应用程序的使用速度。在本文中,我们收集了超过1万名用户的移动数据,利用收集到的移动设备上的数据,从用户的角度研究了移动应用程序的使用模式,包括时间、地点、最后使用的应用程序、网络类型、网络速度等。然后,我们使用朴素贝叶斯和线性模型提出了移动应用程序使用预测方法,用于预测个人下一次推出的应用程序。结果表明,本文提出的App使用预测方法可以达到60%的准确率来预测用户将要启动的手机App。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting User Context and Network Information for Mobile Application Usage Prediction
The explosive increasing mobile Applications (Apps) have been attracting researchers and developers to investigate user preferences on various mobile Apps. Understanding mobile Apps usage pattern of end users will help to improve the quality of mobile Apps and meanwhile enhance the quality of experience of users. For instance, if the mobile device knows the App the user will launch, it can pre-load the App into memory and also put the quick launch icon on the home screen to speed up the App usage. In this paper, we collect mobile data from over 10,000 users and study the mobile Apps usage pattern from user perspective using the collected data on mobile devices, including time, location, last used App, network type, network speed and etc. We then use Naive Bayes and linear model to propose mobile App usage prediction method for the prediction of the next launched App by individuals. The result shows that the proposed App usage prediction method can reach 60% accuracy to predict the mobile App that will be launched by users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信