非均匀介质圆柱形电容器电容的边界公式

I. Ecsedi, Á. Lengyel
{"title":"非均匀介质圆柱形电容器电容的边界公式","authors":"I. Ecsedi, Á. Lengyel","doi":"10.37394/232017.2021.12.17","DOIUrl":null,"url":null,"abstract":"The paper deals with the capacitance of cylindrical capacitor which consists of nonhomogeneous dielectric materials. The infinite long cylindrical surfaces of capacitor have uniform distributed electric charges in axial direction, so that electrostatic boundary value problem which determines the electric field in the nonhomogeneous dielectric material is a twodimensional boundaryvalue problem. The derivation of the bounding formulae is based on the CauchySchwarz inequality. Examples illustrate the applications of the derived upper and lower bound formulae.","PeriodicalId":202814,"journal":{"name":"WSEAS TRANSACTIONS ON ELECTRONICS","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bounding Formulae for Capacitance of Cylindrical Capacitor with Nonhomogeneous Dielectric Material\",\"authors\":\"I. Ecsedi, Á. Lengyel\",\"doi\":\"10.37394/232017.2021.12.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the capacitance of cylindrical capacitor which consists of nonhomogeneous dielectric materials. The infinite long cylindrical surfaces of capacitor have uniform distributed electric charges in axial direction, so that electrostatic boundary value problem which determines the electric field in the nonhomogeneous dielectric material is a twodimensional boundaryvalue problem. The derivation of the bounding formulae is based on the CauchySchwarz inequality. Examples illustrate the applications of the derived upper and lower bound formulae.\",\"PeriodicalId\":202814,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON ELECTRONICS\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON ELECTRONICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232017.2021.12.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON ELECTRONICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232017.2021.12.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了由非均匀介质材料构成的圆柱形电容器的电容。电容器的无限长圆柱形表面具有沿轴向均匀分布的电荷,因此决定非均匀介质材料中电场大小的静电边值问题是一个二维边值问题。边界公式的推导是基于CauchySchwarz不等式的。举例说明了推导出的上界和下界公式的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding Formulae for Capacitance of Cylindrical Capacitor with Nonhomogeneous Dielectric Material
The paper deals with the capacitance of cylindrical capacitor which consists of nonhomogeneous dielectric materials. The infinite long cylindrical surfaces of capacitor have uniform distributed electric charges in axial direction, so that electrostatic boundary value problem which determines the electric field in the nonhomogeneous dielectric material is a twodimensional boundaryvalue problem. The derivation of the bounding formulae is based on the CauchySchwarz inequality. Examples illustrate the applications of the derived upper and lower bound formulae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信