PECVD制备低k SiOCH薄膜的光致发光研究

V. Ligatchev, T. Wong, Rusli
{"title":"PECVD制备低k SiOCH薄膜的光致发光研究","authors":"V. Ligatchev, T. Wong, Rusli","doi":"10.1109/COMMAD.2002.1237279","DOIUrl":null,"url":null,"abstract":"Carbon-doped hydrogenated silicon oxide (SiOCH) low-k films have been prepared using 13.56 MHz discharge in trimethylsilane (3MS) - oxygen gas mixtures at 3, 4, and 5 Torr sustained with RF power densities 1.3 - 2.6 W/cm/sup 2/. The atomic structure of the SiOCH films appears to be a mixture of the amorphous SiO/sub 2/-like and the partially polycrystalline SiC-like phases. Results of the infrared spectroscopy and atomic force microscopy reflect the increment in the volume fraction of the SiC-like phase from 0.22 - 0.28 to 0.36 - 0.39 as the RF power increment. Steady-state near-UV laser-excited (364 nm wavelength, 40/spl plusmn/2 mW) photoluminescence (PL) has been studied at room temperatures in the visible ( 1.8 eV - 3.1 eV) range of photon energies. Two main bands of the PL signal (at the photon energies of 2.5 - 2.6 eV and 2.8 2.9 eV) are observed. Intensities of the both bands are changed non-monotonically with RF power, whereas the bandwidth of /spl sim/0.1 eV remains almost invariable. It is likely that the above lines are originated by the radiative recombination involving D/sub 1/ centres in the crystalline SiC-like phases. Explanation of the PL intensity dependence on the RF power density can be based on results of studies of morphology of the SiOCH films.","PeriodicalId":129668,"journal":{"name":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A photoluminescence of low-K SiOCH films, prepared by PECVD\",\"authors\":\"V. Ligatchev, T. Wong, Rusli\",\"doi\":\"10.1109/COMMAD.2002.1237279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon-doped hydrogenated silicon oxide (SiOCH) low-k films have been prepared using 13.56 MHz discharge in trimethylsilane (3MS) - oxygen gas mixtures at 3, 4, and 5 Torr sustained with RF power densities 1.3 - 2.6 W/cm/sup 2/. The atomic structure of the SiOCH films appears to be a mixture of the amorphous SiO/sub 2/-like and the partially polycrystalline SiC-like phases. Results of the infrared spectroscopy and atomic force microscopy reflect the increment in the volume fraction of the SiC-like phase from 0.22 - 0.28 to 0.36 - 0.39 as the RF power increment. Steady-state near-UV laser-excited (364 nm wavelength, 40/spl plusmn/2 mW) photoluminescence (PL) has been studied at room temperatures in the visible ( 1.8 eV - 3.1 eV) range of photon energies. Two main bands of the PL signal (at the photon energies of 2.5 - 2.6 eV and 2.8 2.9 eV) are observed. Intensities of the both bands are changed non-monotonically with RF power, whereas the bandwidth of /spl sim/0.1 eV remains almost invariable. It is likely that the above lines are originated by the radiative recombination involving D/sub 1/ centres in the crystalline SiC-like phases. Explanation of the PL intensity dependence on the RF power density can be based on results of studies of morphology of the SiOCH films.\",\"PeriodicalId\":129668,\"journal\":{\"name\":\"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMMAD.2002.1237279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2002.1237279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用13.56 MHz放电,在三甲基硅烷(3MS) -氧气混合物中制备了碳掺杂氢化氧化硅(SiOCH)低钾薄膜,放电条件为3,4,5 Torr,射频功率密度为1.3 - 2.6 W/cm/sup /。SiOCH薄膜的原子结构表现为非晶SiO/ sub2 / like相和部分多晶SiC-like相的混合物。红外光谱和原子力显微镜分析结果表明,随着射频功率的增加,类sic相的体积分数从0.22 ~ 0.28增加到0.36 ~ 0.39。在室温下,研究了稳态近紫外激光激发(364 nm波长,40/spl plusmn/2 mW)在可见光(1.8 eV ~ 3.1 eV)范围内的光致发光(PL)。在光子能量为2.5 ~ 2.6 eV和2.8 ~ 2.9 eV时,观测到了PL信号的两个主要波段。两个波段的强度随射频功率呈非单调变化,而/spl sim/0.1 eV的带宽几乎保持不变。上述谱线很可能是由类sic晶相中的D/sub /中心的辐射复合引起的。荧光强度与射频功率密度的关系可以根据SiOCH薄膜的形貌研究结果来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A photoluminescence of low-K SiOCH films, prepared by PECVD
Carbon-doped hydrogenated silicon oxide (SiOCH) low-k films have been prepared using 13.56 MHz discharge in trimethylsilane (3MS) - oxygen gas mixtures at 3, 4, and 5 Torr sustained with RF power densities 1.3 - 2.6 W/cm/sup 2/. The atomic structure of the SiOCH films appears to be a mixture of the amorphous SiO/sub 2/-like and the partially polycrystalline SiC-like phases. Results of the infrared spectroscopy and atomic force microscopy reflect the increment in the volume fraction of the SiC-like phase from 0.22 - 0.28 to 0.36 - 0.39 as the RF power increment. Steady-state near-UV laser-excited (364 nm wavelength, 40/spl plusmn/2 mW) photoluminescence (PL) has been studied at room temperatures in the visible ( 1.8 eV - 3.1 eV) range of photon energies. Two main bands of the PL signal (at the photon energies of 2.5 - 2.6 eV and 2.8 2.9 eV) are observed. Intensities of the both bands are changed non-monotonically with RF power, whereas the bandwidth of /spl sim/0.1 eV remains almost invariable. It is likely that the above lines are originated by the radiative recombination involving D/sub 1/ centres in the crystalline SiC-like phases. Explanation of the PL intensity dependence on the RF power density can be based on results of studies of morphology of the SiOCH films.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信